Skip to main content
Log in

Nonlinear Constitutive Soil Models for the Soil–Structure Interaction Modeling Issues with Emphasis on Shallow Tunnels: A Review

  • Review Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With the growing recognition of the significance of accurate soil–structure interaction (SSI) modeling in geotechnical earthquake engineering, particularly for shallow tunnels in soft soils, a comprehensive understanding of soil nonlinearity (due to the variable shear strain level) becomes critical. In this regard, this work aims to identify the capabilities of several nonlinear constitutive soil models under various loading conditions and how they can be effectively employed using the finite difference method in a three-dimensional context to implement full dynamic motion equations. Therefore, this review paper encompasses an in-depth exploration of nonlinear constitutive soil models and their utility under varying loading conditions, with a specific focus on SSI in shallow tunnels. This research also provides strategic recommendations and limitations addressing critical modeling issues in general and related to model dimensions, loading, and boundary conditions, thus offering valuable guidance for future research and applications in this field. The investigation revealed that certain models are more effective under specific loading conditions, providing new insights into how best to apply these models for accurate SSI modeling. This enhanced understanding of the capabilities of different soil models under various conditions offers invaluable guidance for future research. It also has significant implications for the practical application in geotechnical earthquake engineering, especially concerning the safety and resilience of shallow tunnels in seismic-prone regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Hashash, Y.M.; Hook, J.J.; Schmidt, B.; John, I.; Yao, C.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001). https://doi.org/10.1016/S0886-7798(01)00051-7

    Article  Google Scholar 

  2. Yoshida, N.; Nakamura, S.: Damage to Daikai subway station during the 1995 Hyogoken-Nunbu earthquake and its investigation. In: Proceedings of Eleventh World Conference on Earthquake Engineering (1996)

  3. Al-Farhan, Z.F.; Al-Obaydi, M.A.; Al-Saffar, Q.N.: Tunnel–soil–structure interaction under seismic load. In: Karkush, M.O.; Choudhury, D. (Eds.) Geotechnical Engineering and Sustainable Construction, pp. 91–102. Springer, Berlin (2022). https://doi.org/10.1007/978-981-16-6277-5_8

    Chapter  Google Scholar 

  4. Pitilakis, K.; Tsinidis, G.; Leanza, A.; Maugeri, M.: Seismic behaviour of circular tunnels accounting for above ground structures interaction effects. Soil Dyn. Earthq. Eng. 67, 1–15 (2014). https://doi.org/10.1016/j.soildyn.2014.08.009

    Article  Google Scholar 

  5. Psarropoulos, P.: Impact of tunnels and underground spaces on the seismic response of overlying structures. In: Sakellariou, M. (Ed.) Tunnel Engineering-Selected Topics. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.89338

    Chapter  Google Scholar 

  6. Brinkgreve, R.B.: Selection of soil models and parameters for geotechnical engineering application. In: Yamamuro, J.A.; Kaliakin, V.N. (Eds.) Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 69–98. American Society of Civil Engineers, Reston (2005)

    Chapter  Google Scholar 

  7. Wani, K.; Showkat, R.: Soil constitutive models and their application in geotechnical engineering: a review. Int. J. Eng. Res. Technol. 7(4), 137–145 (2018)

    Google Scholar 

  8. Jia, J.: Soil Dynamics and Foundation Modeling. Springer, Berlin (2018) https://doi.org/10.1007/978-3-319-40358-8

    Book  Google Scholar 

  9. Liu, J.; Wu, L.; Yin, K.; Song, C.; Bian, X.; Li, S.: Methods for solving finite element mesh-dependency problems in geotechnical engineering—a review. Sustainability 14(5), 2982 (2022)

    Article  Google Scholar 

  10. Atkinson, J.: Experimental determination of stress–strain–time characteristics in laboratory and-in-situ tests. General report. In: Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering (1991)

  11. Mair, R.; UNWIN: Unwin memorial lecture 1992. Developments in geotechnical engineering research: application to tunnels and deep excavations. Delivered at the ice on 17 March 1992 (Abridged) (winner of 1994 geotechnical research medal). In: Proceedings of the Institution of Civil Engineers–Civil Engineering. Thomas Telford-ICE Virtual Library (1993). https://doi.org/10.1680/icien.1993.22378

  12. Labuz, J.F.; Zang, A.: Mohr–Coulomb failure criterion. Rock Mech. Rock Eng. 45(6), 975–979 (2012). https://doi.org/10.1007/s00603-012-0281-7

    Article  Google Scholar 

  13. Drucker, D.C.; Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duncan, J.M.; Chang, C.-Y.: Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. 96(5), 1629–1653 (1970). https://doi.org/10.1061/JSFEAQ.0001458

    Article  Google Scholar 

  15. Whittle, A.: Evaluation of a constitutive model for overconsolidated clays. Geotechnique 43(2), 289–313 (1993). https://doi.org/10.1680/geot.1993.43.2.289

    Article  Google Scholar 

  16. Burland, J.: The yieding and dilation of clay. Géotechnique 15(1), 211–214 (1965)

    Article  Google Scholar 

  17. Roscoe, K.; Schofield, A.; Thurairajah, A.: Yielding of clays in states wetter than critical. Geotechnique 13(3), 211–240 (1963). https://doi.org/10.1680/geot.1963.13.3.211

    Article  Google Scholar 

  18. Roscoe, K.H.; Burland, J.: on the generalized stress–strain behaviour of wet clay. (1968).

  19. Mohr, O.: Abhandlungen aus dem Gebiete der technischen Mechanik. W. Ernst & Sohn, Hoboken (1914)

    MATH  Google Scholar 

  20. Ti, K.S.; Huat, B.B.; Noorzaei, J.; Jaafar, M.S.; Sew, G.S.: A review of basic soil constitutive models for geotechnical application. Electron. J. Geotech. Eng. 14, 1–18 (2009)

    Google Scholar 

  21. Dias, D.; Jenck, O.: SSI analysis in geotechnical engineering problems using a finite difference method. In: Grange, S.; Salciarini, D. (Eds.) Deterministic Numerical Modeling of Soil–Structure Interaction, pp. 101–141. Wiley, Hoboken (2022). https://doi.org/10.1002/9781119887690.ch3

    Chapter  Google Scholar 

  22. Ghazvinian, E.; Garza-Cruz, T.; Bouzeran, L.; Fuenzalida, M.; Cheng, Z.; Cancino, C.; Pierce, M.: Theory and implementation of the Itasca constitutive model for advanced strain softening (IMASS). In: MassMin 2020: Proceedings of the Eight International Conference and Exhibition on Mass Mining, University of Chile, Santiago (2020)

  23. Cheng, Z.; Detournay, C.: Formulation, validation and application of a practice-oriented two-surface plasticity sand model. Comput. Geotech. 132, 103984 (2021). https://doi.org/10.1016/j.compgeo.2020.103984

    Article  Google Scholar 

  24. Meng, G.; Detournay, C.; Cundall, P.: Formulation and application of a constitutive model for multijointed material to rock mass engineering. Int. J. Geomech. 20(6), 04020044 (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001646

    Article  Google Scholar 

  25. Detournay, C.; Meng, G.; Cundall, P.: Development of a constitutive model for columnar basalt. In: Proceedings of the 4th Itasca Symposium on Applied Numerical Modeling. Itasca, Minneapolis (2016)

  26. Cheng, Z.; Jefferies, M.: Implementation and verification of NorSand model in general 3D framework. In: Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics. American Society of Civil Engineers Reston, VA (2020)

  27. Cudny, M.; Truty, A.: Refinement of the hardening soil model within the small strain range. Acta Geotech. 15(8), 2031–2051 (2020). https://doi.org/10.1007/s11440-020-00945-5

    Article  Google Scholar 

  28. Sica, S.; Dello Russo, A.; Rotili, F.; Simonelli, A.L.: Ground motion amplification due to shallow cavities in nonlinear soils. Nat. Hazards. 71(3), 1913–1935 (2014). https://doi.org/10.1007/s11069-013-0989-z

    Article  Google Scholar 

  29. Smerzini, C.; Aviles, J.; Paolucci, R.; Sánchez-Sesma, F.: Effect of underground cavities on surface earthquake ground motion under SH wave propagation. Earthq. Eng. Struct. Dyn. 38(12), 1441–1460 (2009). https://doi.org/10.1002/eqe.912

    Article  Google Scholar 

  30. Dias, D.; Kastner, R.: Movements caused by the excavation of tunnels using face pressurized shields—analysis of monitoring and numerical modeling results. Eng. Geol. 152(1), 17–25 (2013). https://doi.org/10.1016/j.enggeo.2012.10.002

    Article  Google Scholar 

  31. Zakhem, A.M.; El Naggar, H.: Three-dimensional investigation of how newly constructed buildings supported on raft foundations affect pre-existing tunnels. Transp. Geotech. 22, 100324 (2020). https://doi.org/10.1016/j.trgeo.2020.100324

    Article  Google Scholar 

  32. Zidan, A.; Ramadan, O.: Three dimensional numerical analysis of the effects of tunnelling near piled structures. KSCE J. Civ. Eng. 19, 917–928 (2015). https://doi.org/10.1007/s12205-014-0741-6

    Article  Google Scholar 

  33. Lee, C.: Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock. Tunn. Undergr. Space Technol. 32, 132–142 (2012). https://doi.org/10.1016/j.tust.2012.06.005

    Article  Google Scholar 

  34. Nematollahi, M.; Dias, D.: Three-dimensional numerical simulation of pile-twin tunnels interaction—case of the Shiraz subway line. Tunn. Undergr. Space Technol. 86, 75–88 (2019). https://doi.org/10.1016/j.tust.2018.12.002

    Article  Google Scholar 

  35. Lueprasert, P.; Jongpradist, P.; Jongpradist, P.; Suwansawat, S.: Numerical investigation of tunnel deformation due to adjacent loaded pile and pile–soil–tunnel interaction. Tunn. Undergr. Space Technol. 70, 166–181 (2017). https://doi.org/10.1016/j.tust.2017.08.006

    Article  Google Scholar 

  36. Miao, Y.; Zhong, Y.; Ruan, B.; Cheng, K.; Wang, G.: Seismic response of a subway station in soft soil considering the structure–soil–structure interaction. Tunn. Undergr. Space Technol. 106, 103629 (2020). https://doi.org/10.1016/j.tust.2020.103629

    Article  Google Scholar 

  37. Xiang, Y.; Feng, S.: Theoretical prediction of the potential plastic zone of shallow tunneling in vicinity of pile foundation in soils. Tunn. Undergr. Space Technol. 38, 115–121 (2013). https://doi.org/10.1016/j.tust.2013.05.006

    Article  Google Scholar 

  38. Janin, J.; Dias, D.: Tunnel face reinforcement by bolting—numerical modelling of centrifuge tests. Soils Rocks 37(1), 1–27 (2014)

    Article  Google Scholar 

  39. Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I.: 2D tunnel numerical investigation: the influence of the simplified excavation method on tunnel behaviour. Geotech. Geol. Eng. 32(1), 43–58 (2014). https://doi.org/10.1007/s10706-013-9690-y

    Article  Google Scholar 

  40. Do, N.A.; Dias, D.; Oreste, P.: 2D seismic numerical analysis of segmental tunnel lining behaviour. Bull. N. Z. Soc. Earthq. Eng. 47(3), 206–216 (2014). https://doi.org/10.5459/bnzsee.47.3.206-216

    Article  Google Scholar 

  41. Massinas, S.: Designing a tunnel. In: Sakellariou, M. (Ed.) Tunnel Engineering-Selected Topics. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.90182

    Chapter  Google Scholar 

  42. Abate, G.; Massimino, M.R.: Parametric analysis of the seismic response of coupled tunnel–soil–aboveground building systems by numerical modelling. Bull. Earthq. Eng. 15(1), 443–467 (2017). https://doi.org/10.1007/s10518-016-9975-7

    Article  Google Scholar 

  43. Rostami, A.; Ziarati, M.A.; Shahi, B.; Jahani, S.: Evaluation of seismic behavior and earth’s surface acceleration, by interaction of tunnels with different shapes and different types of soils. Open J. Civ. Eng. 6(2), 242–253 (2016). https://doi.org/10.4236/ojce.2016.62022

    Article  Google Scholar 

  44. Baziar, M.H.; Moghadam, M.R.; Kim, D.-S.; Choo, Y.W.: Effect of underground tunnel on the ground surface acceleration. Tunn. Undergr. Space Technol. 44, 10–22 (2014). https://doi.org/10.1016/j.tust.2014.07.004

    Article  Google Scholar 

  45. Jenck, O.; Dias, D.: Analyse tridimensionnelle en différences finies de l’interaction entre une structure en béton et le creusement d’un tunnel à faible profondeur: 3D-finite difference analysis of the interaction between concrete building and shallow tunnelling. Geotechnique 54(8), 519–528 (2004). https://doi.org/10.1680/geot.2004.54.8.519

    Article  Google Scholar 

  46. Itasca Consulting Group: FLAC 3D Version 9, User’s Guide (2023). Available from: https://docs.itascacg.com/itasca900/common/docproject/source/manual/program_guide/models/theory/plasticmodel.html?node1206. Accessed 30 June 2023

  47. Loganathan, N.; Poulos, H.; Xu, K.: Ground and pile-group responses due to tunnelling. Soils Found. 41(1), 57–67 (2001). https://doi.org/10.3208/sandf.41.57

    Article  Google Scholar 

  48. Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I.: 2D numerical investigation of segmental tunnel lining behavior. Tunn. Undergr. Space Technol. 37, 115–127 (2013). https://doi.org/10.1016/j.tust.2013.03.008

    Article  Google Scholar 

  49. Do, N.; Dias, D.; Oreste, P.; Djeran-Maigre, I.: 3D modelling for mechanized tunnelling in soft ground-Influence of the constitutive model. Am. J. Appl. Sci. 10(8), 863–875 (2013). https://doi.org/10.3844/ajassp.2013.863.875

    Article  Google Scholar 

  50. Cundall, P.A.: Adaptive density-scaling for time-explicit calculations (1982)

  51. Marti, J.; Cundall, P.: Mixed discretization procedure for accurate modelling of plastic collapse. Int. J. Numer. Anal. Methods Geomech. 6(1), 129–139 (1982). https://doi.org/10.1002/nag.1610060109

    Article  MATH  Google Scholar 

  52. Billaux, D.; Cundall, P.: Simulation des géomatériaux par la méthode des éléments Lagrangiens. Rev. Fr. Géotech. 63, 9–21 (1993). https://doi.org/10.1051/geotech/1993063009

    Article  Google Scholar 

  53. Puzrin, A.: Constitutive Modelling in Geomechanics: Introduction. Springer, Berlin (2012) https://doi.org/10.1007/978-3-642-27395-7

    Book  Google Scholar 

  54. Hicher, P.-Y.; Shao, J.-F.: Constitutive Modeling of Soils and Rocks. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  55. Jia, J.: Essentials of Applied Dynamic Analysis, Vol. 750. Springer, Berlin (2014) https://doi.org/10.1007/978-3-642-37003-8

    Book  MATH  Google Scholar 

  56. Masing, G.: Eigenspannumyen und verfeshungung beim messing. In: Proceedings of the International Congress for Applied Mechanics (1926)

  57. Phillips, C.; Hashash, Y.M.: Damping formulation for nonlinear 1D site response analyses. Soil Dyn. Earthq. Eng. 29(7), 1143–1158 (2009). https://doi.org/10.1016/j.soildyn.2009.01.004

    Article  Google Scholar 

  58. Vucetic, M.: Normalized behavior of clay under irregular cyclic loading. Can. Geotech. J. 27(1), 29–46 (1990). https://doi.org/10.1139/t90-004

    Article  Google Scholar 

  59. Wang, Z.; Han, Q.; Zhou, G.: Wave propagation method of site seismic response by visco-elastoplastic model. In: Proceedings of the Seventh World Conference on Earthquake Engineering (1980)

  60. Pyke, R.: TESS: a computer program for nonlinear ground response analyses. In: TAGA Engineering Systems and Software, Lafayette, California. (2000)

  61. Vucetic, M.: Pore Pressure Buildup and Liquefaction at Level Sandy Sites During Earthquakes (California, Japan). Rensselaer Polytechnic Institute. (1986) https://hdl.handle.net/20.500.13015/1392

  62. Lanzo, G.; Vucetic, M.: Effect of soil plasticity on damping ratio at small cyclic strains. Soils Found. 39(4), 131–141 (1999). https://doi.org/10.3208/sandf.39.4_131

    Article  Google Scholar 

  63. Wood, D.M.: Geotechnical Modelling. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  64. Kramer, S.: Geotechnical Earthquake Engineering, p. 07458. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  65. Dafalias, Y.: Bounding surface formulation of soil plasticity. In: Pande, G.N.; Zienkiewicz, O.C. (Eds.) Soil Mechanics-Transient and Cyclic Loads, pp. 253–282. Wiley, Hoboken (1982)

    Google Scholar 

  66. Hashiguchi, K.: Two-and three-surface models of plasticity. In: International Conference on Numerical Methods in Geomechanics (1985)

  67. Mestat, P.; Bourgeois, E.; Riou, Y.: Numerical modelling of embankments and underground works. Comput. Geotech. 31(3), 227–236 (2004). https://doi.org/10.1016/j.compgeo.2004.01.003

    Article  Google Scholar 

  68. Pathak, Y.; Alfaro, M.: Wetting-drying behaviour of geogrid-reinforced clay under working load conditions. Geosynth. Int. 17(3), 144–156 (2010). https://doi.org/10.1680/gein.2010.17.3.144

    Article  Google Scholar 

  69. Noorany, I.; Frydman, S.; Detournay, C.: Prediction of soil slope deformation due to wetting. In: Detournay, C.; Hart, R. (Eds.) FLAC and Numerical Modeling in Geomechanics, pp. 101–107. CRC Press, London (1999)

    Google Scholar 

  70. Schanz, T.; Vermeer, P.; Bonnier, P.G.: The hardening soil model: formulation and verification. In: Brinkgreve, R.B.J. (Ed.) Beyond 2000 in Computational Geotechnics, pp. 281–296. Routledge, London (2019). https://doi.org/10.1201/9781315138206

    Chapter  Google Scholar 

  71. Schofield, A.N.; Wroth, P.: Critical State Soil Mechanics, Vol. 310. McGraw-Hill, London (1968)

    Google Scholar 

  72. Gens, A.; Potts, D.: Critical state models in computational geomechanics. Eng. Comput. (1988). https://doi.org/10.1108/eb023736

    Article  Google Scholar 

  73. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  74. Pan, X.; Hudson, J.: A simplified three dimensional Hoek–Brown yield criterion. In: ISRM International Symposium. OnePetro (1988)

  75. Hoek, E.; Wood, D.; Shah, S.: A modified Hoek–Brown failure criterion for jointed rock masses. In: Rock Characterization: ISRM Symposium, Eurock'92, Chester, UK, 14–17 September 1992. Thomas Telford Publishing (1992)

  76. Hoek, E.; Carranza-Torres, C.; Corkum, B.: Hoek–Brown failure criterion-2002 edition. Proc. NARMS-Tac 1(1), 267–273 (2002)

    Google Scholar 

  77. Shah, S.: study of the behaviour of jointed rock masses. Ph.D. thesis. Toronto Department of Civil Engineering, University of Toronto (1992)

  78. Carter, T.G.; Carvalho, J.L.; Swan, G.: Towards the practical application of ground reaction curves. In: International Congress on Mine Design (1993)

  79. Hoek, E.; Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34(8), 1165–1186 (1997)

    Article  Google Scholar 

  80. Hoek, E.; Brown, E.: Underground Excavations in Rock, p. 527. Institution of Mining and Metallurgy, London (1980)

    Google Scholar 

  81. Byrne, P.; Park, S.; Beaty, M.: Seismic liquefaction: centrifuge and numerical modeling. In: Proceedings of 3rd International FLAC Symposium, Sudbury (2003)

  82. Rowe, P.W.: The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. Proce. R. Soc. Lond. Ser. A Math. Phys. Sci. 269(1339), 500–527 (1962). https://doi.org/10.1098/rspa.1962.0193

    Article  Google Scholar 

  83. Duancan, J.: Strength, stress–strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses. Report No. UCB/GT/80–01 (1980)

  84. Chen, C.: Mechanics of Geomaterials, p. 65–86. Wiley, Hoboken (1985)

    Google Scholar 

  85. Brinkgreve, R.: Geomaterial models and numerical analysis of softening. Ph.D. thesis (1994)

  86. Jefferies, M.: Nor-Sand: a simle critical state model for sand. Géotechnique 43(1), 91–103 (1993)

    Article  Google Scholar 

  87. Jefferies, M.; Been, K.: Soil Liquefaction: A Critical State Approach. CRC Press, London (2015)

    Book  Google Scholar 

  88. Dafalias, Y.F.; Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622–634 (2004)

    Article  Google Scholar 

  89. Barton, N.; Kjærnsli, B.: Shear strength of rockfill. J. Geotech. Eng. Div. 107(7), 873–891 (1981)

    Article  Google Scholar 

  90. Lorig, L.; Pierce, M.: Methodology and guidelines for numerical modelling of undercut and extraction level behaviour in caving mines. Itasca Consulting Group Inc, Report to International Caving Study (2000)

  91. Desai, C.S.; Zaman, M.: Advanced Geotechnical Engineering: Soil–Structure Interaction Using Computer and Material Models. CRC Press, London (2013)

    Book  Google Scholar 

  92. Do, N.A.; Dias, D.: A comparison of 2D and 3D numerical simulations of tunnelling in soft soils. Environ. Earth Sci. 76(3), 1–12 (2017). https://doi.org/10.1007/s12665-017-6425-z

    Article  Google Scholar 

  93. Maleki, M.; Khezri, A.; Nosrati, M.; Hosseini, S.M.M.M.: Seismic amplification factor and dynamic response of soil-nailed walls. Model. Earth Syst. Environ. 9(1), 1181–1198 (2023). https://doi.org/10.1007/s40808-022-01543-y

    Article  Google Scholar 

  94. Maleki, M.; Nabizadeh, A.: Seismic performance of deep excavation restrained by guardian truss structures system using quasi-static approach. SN Appl. Sci. 3, 1–17 (2021). https://doi.org/10.1007/s42452-021-04415-9

    Article  Google Scholar 

  95. Maleki, M.; Mir Mohammad Hosseini, S.M.: Assessment of the pseudo-static seismic behavior in the soil nail walls using numerical analysis. Innov. Infrastruct. Solut. 7(4), 262 (2022). https://doi.org/10.1007/s41062-022-00861-5

    Article  Google Scholar 

  96. Rahmani, F.; Hosseini, S.M.; Khezri, A.; Maleki, M.: Effect of grid-form deep soil mixing on the liquefaction-induced foundation settlement, using numerical approach. Arab. J. Geosci. 15(12), 1112 (2022). https://doi.org/10.1007/s12517-022-10340-x

    Article  Google Scholar 

  97. Maleki, M.; Imani, M.: Active lateral pressure to rigid retaining walls in the presence of an adjacent rock mass. Arab. J. Geosci. 15(2), 152 (2022). https://doi.org/10.1007/s12517-022-09454-z

    Article  Google Scholar 

  98. Maleki, M.; Mir Mohammad Hosseini, S.: Seismic performance of deep excavations restrained by anchorage system using quasi static approach. J. Seismol. Earthq. Eng. 21(2), 11–21 (2019). https://doi.org/10.48303/jsee.2019.240810

    Article  Google Scholar 

  99. Hoek, E.: Numerical modelling for shallow tunnels in weak rock (2004). Available in https://www.rocscience.com

  100. Atkinson, J.: The Mechanics of Soils and Foundations. CRC Press, London (2017)

    Google Scholar 

  101. Manzari, M.T.; Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997). https://doi.org/10.1680/geot.1997.47.2.255

    Article  Google Scholar 

  102. Gudehus, G.: Requirements for constitutive relations for soils. In: Bazant, Z.P. (Ed.) Mechanics of Geomaterials, pp. 47–63. Wiley, New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Çetindemir.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetindemir, O. Nonlinear Constitutive Soil Models for the Soil–Structure Interaction Modeling Issues with Emphasis on Shallow Tunnels: A Review. Arab J Sci Eng 48, 12657–12691 (2023). https://doi.org/10.1007/s13369-023-08140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08140-w

Keywords

Navigation