Skip to main content
Log in

Signaling mechanisms regulating B-lymphocyte activation and tolerance

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    CAS  PubMed  Google Scholar 

  2. Thomas A Packard JCC (2013) B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Reports. doi: 10.12703/P5-40

  3. Stepanek O, Draber P, Drobek A, Horejsi V, Brdicka T (2013) Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. J Immunol 190:1807–1818

    CAS  PubMed  Google Scholar 

  4. Mukherjee S, Zhu J, Zikherman J, Parameswaran R, Kadlecek TA, Wang Q, Au-Yeung B, Ploegh H, Kuriyan J, Das J (2013) Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal. doi:10.1126/scisignal.2003220

    PubMed Central  PubMed  Google Scholar 

  5. Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T (2000) BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13:817–827

    CAS  PubMed  Google Scholar 

  6. Jumaa H, Hendriks RW, Reth M (2005) B cell signaling and tumorigenesis. Annu Rev Immunol 23:415–445

    CAS  PubMed  Google Scholar 

  7. Engels N, Wollscheid B, Wienands J (2001) Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur J Immunol 31:2126–2134

    CAS  PubMed  Google Scholar 

  8. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik J-H, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139:573–586

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Oh-hora M, Rao A (2008) Calcium signaling in lymphocytes. Curr Opin Immunol 20:250–258

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilágyi N, Matkó J, Sármay G (2013) B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 93:537–547

    CAS  PubMed  Google Scholar 

  11. Blachly JS, Baiocchi RA (2014) Targeting PI3-kinase (PI3K), AKT and mTOR axis in lymphoma. Br J Haematol 167:19–32

    CAS  PubMed  Google Scholar 

  12. Dieterle AM, Böhler P, Keppeler H, Alers S, Berleth N, Drießen S, Hieke N, Pietkiewicz S, Löffler AS, Peter C et al (2014) PDK1 controls upstream PI3K expression and PIP3 generation. Oncogene 33:3043–3053

    CAS  PubMed  Google Scholar 

  13. Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14:219–232

    CAS  PubMed  Google Scholar 

  14. Limnander A, Weiss A (2011) Ca-dependent Ras/Erk signaling mediates negative selection of autoreactive B cells. Small GTPases 2:282–288

    PubMed Central  PubMed  Google Scholar 

  15. Genot E, Cantrell DA (2000) Ras regulation and function in lymphocytes. Curr Opin Immunol 12:289–294

    CAS  PubMed  Google Scholar 

  16. Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T (2003) Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med 198:1841–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A (2007) Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol Cell Biol 27:2732–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ackermann JA, Radtke D, Maurberger A, Winkler TH, Nitschke L (2011) Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 30:1621–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Engels N, König LM, Heemann C, Lutz J, Tsubata T, Griep S, Schrader V, Wienands J (2009) Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol 10:1018–1025

    CAS  PubMed  Google Scholar 

  20. Han A, Saijo K, Mecklenbräuker I, Tarakhovsky A, Nussenzweig MC (2003) Bam32 links the B cell receptor to ERK and JNK and mediates B cell proliferation but not survival. Immunity 19:621–632

    CAS  PubMed  Google Scholar 

  21. Okamoto T (2006) NF-kappaB and rheumatic diseases. Endocr Metab Immune Disord Drug Targets 6:359–372

    CAS  PubMed  Google Scholar 

  22. Sun S-C, Chang J-H, Jin J (2013) Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 34:282–289

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    CAS  PubMed  Google Scholar 

  24. Thome M, Charton JE, Pelzer C, Hailfinger S (2010) Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2:a003004

    PubMed Central  PubMed  Google Scholar 

  25. Inabe K, Kurosaki T (2002) Tyrosine phosphorylation of B-cell adaptor for phosphoinositide 3-kinase is required for Akt activation in response to CD19 engagement. Blood 99:584–589

    CAS  PubMed  Google Scholar 

  26. Fujimoto M, Fujimoto Y, Poe JC, Jansen PJ, Lowell CA, DeFranco AL, Tedder TF (2000) CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13:47–57

    CAS  PubMed  Google Scholar 

  27. Aiba Y, Kameyama M, Yamazaki T, Tedder TF, Kurosaki T (2008) Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood 111:1497–1503

    CAS  PubMed  Google Scholar 

  28. Ingham RJ, Santos L, Dang-Lawson M, Holgado-Madruga M, Dudek P, Maroun CR, Wong AJ, Matsuuchi L, Gold MR (2001) The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J Biol Chem 276:12257–12265

    CAS  PubMed  Google Scholar 

  29. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1:167–178

    CAS  PubMed  Google Scholar 

  30. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA (1994) Mice deficient for the CD40 ligand. Immunity 1:423–431

    CAS  PubMed  Google Scholar 

  31. Arpin C, Dechanet J, Van Kooten C, Merville P, Grouard G, Briere F, Banchereau J, Liu Y (1995) Generation of memory B cells and plasma cells in vitro. Science 268:720–722

    CAS  PubMed  Google Scholar 

  32. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, Browning JL, Mackay F (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192:1453–1466

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, Frew E, Scott ML (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293:2111–2114

    CAS  PubMed  Google Scholar 

  34. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293:2108–2111

    CAS  PubMed  Google Scholar 

  35. Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A (2000) Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol 10:785–788

    CAS  PubMed  Google Scholar 

  36. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M (2004) TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 173:2245–2252

    CAS  PubMed  Google Scholar 

  37. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229:152–172

    CAS  PubMed  Google Scholar 

  38. Rickert RC, Jellusova J, Miletic AV (2011) Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 244:115–133

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Zarnegar B, He JQ, Oganesyan G, Hoffmann A, Baltimore D, Cheng G (2004) Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-kappaB activation pathways. Proc Natl Acad Sci U S A 101:8108–8113

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Claudio E, Brown K, Park S, Wang H, Siebenlist U (2002) BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 3:958–965

    CAS  PubMed  Google Scholar 

  41. Xie P, Hostager BS, Munroe ME, Moore CR, Bishop GA (2006) Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling. J Immunol 176:5388–5400

    CAS  PubMed  Google Scholar 

  42. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J-I, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    CAS  PubMed  Google Scholar 

  43. Liao G, Liao G, Zhang M, Zhang M, Harhaj EW, Harhaj EW, Sun S-C, Sun S-C (2004) Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 279:26243–26250

    CAS  PubMed  Google Scholar 

  44. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252

    CAS  PubMed  Google Scholar 

  45. Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416:345–347

    PubMed  Google Scholar 

  46. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H (2010) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38:101–113

    PubMed Central  PubMed  Google Scholar 

  47. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877

    CAS  PubMed  Google Scholar 

  48. Bertrand MJM, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    CAS  PubMed  Google Scholar 

  49. Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A, Phu L, Arnott D, Aghajan M, Zobel K et al (2009) Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). Biochem J 417:149–160

    CAS  PubMed  Google Scholar 

  50. Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401–409

    CAS  PubMed  Google Scholar 

  51. Morrison MD, Reiley W, Zhang M, Sun S-C (2005) An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 280:10018–10024

    CAS  PubMed  Google Scholar 

  52. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng P-H, Keats JJ, Wang H, Vignali DAA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9:1364–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gallagher E, Enzler T, Matsuzawa A, Anzelon-Mills A, Otero D, Holzer R, Janssen E, Gao M, Karin M (2007) Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat Immunol 8:57–63

    CAS  PubMed  Google Scholar 

  54. Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T, Shirakabe K, Muro Y, Shibuya H, Matsumoto K et al (1996) A Novel Kinase Cascade Mediated by Mitogen-activated Protein Kinase Kinase 6 and MKK3. J Biol Chem 271:13675–13679

    CAS  PubMed  Google Scholar 

  55. Arcipowski KM, Bishop GA (2012) Roles of the Kinase TAK1 in TRAF6-dependent signaling by CD40 and its oncogenic viral Mimic, LMP1. PLoS ONE 7:e42478

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Craxton A, Shu G, Graves JD, Saklatvala J, Krebs EG, Clark EA (1998) p38 MAPK is required for CD40-induced gene expression and proliferation in B lymphocytes. J Immunol 161:3225–3236

    CAS  PubMed  Google Scholar 

  57. Badr G, Borhis G, Lefevre EA, Chaoul N, Deshayes F, Dessirier V, Lapree G, Tsapis A, Richard Y (2008) BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood 111:2744–2754

    CAS  PubMed  Google Scholar 

  58. Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y (2001) A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 276:30011–30017

    CAS  PubMed  Google Scholar 

  59. Andjelic S, Hsia C, Suzuki H, Kadowaki T, Koyasu S, Liou HC (2000) Phosphatidylinositol 3-Kinase and NF- B/Rel Are at the divergence of CD40-mediated proliferation and survival pathways. J Immunol 165:3860–3867

    CAS  PubMed  Google Scholar 

  60. Jellusova J, Miletic AV, Cato MH, Lin W-W, Hu Y, Bishop GA, Shlomchik MJ, Rickert RC (2013) Context-specific BAFF-R signaling by the NF-κB and PI3K pathways. Cell Rep 5:1022–1035

    CAS  PubMed  Google Scholar 

  61. Browne EP (2012) Regulation of B-cell responses by Toll-like receptors. Immunology 136:370–379

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Meyer-Bahlburg A, Rawlings DJ (2008) B cell autonomous TLR signaling and autoimmunity. Autoimmun Rev 7:313–316

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Green NM, Marshak-Rothstein A (2011) Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23:106–112

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Liu Y, Yin H, Zhao M, Lu Q (2013) TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. doi:10.1007/s12016-013-8402-y

    PubMed  Google Scholar 

  65. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9:684–691

    CAS  PubMed  Google Scholar 

  66. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT (2005) The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 280:17005–17012

    CAS  PubMed  Google Scholar 

  67. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S-I, Honda K, Ohba Y, Mak TW et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249

    CAS  PubMed  Google Scholar 

  68. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 103:15136–15141

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T (1998) A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J Exp Med 187:1343–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR (1995) Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311

    CAS  PubMed  Google Scholar 

  71. Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL (2014) Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J Immunol 192:875–885

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tsubata T (2012) Role of inhibitory BCR co-receptors in immunity. Infect Disord Drug Targets 12:181–190

    CAS  PubMed  Google Scholar 

  73. Pao LI, Badour K, Siminovitch KA, Neel BG (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523

    CAS  PubMed  Google Scholar 

  74. Pao LI, Lam K-P, Henderson JM, Kutok JL, Alimzhanov M, Nitschke L, Thomas ML, Neel BG, Rajewsky K (2007) B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 27:35–48

    CAS  PubMed  Google Scholar 

  75. Huck S, Le Corre R, Youinou P, Zouali M (2001) Expression of B cell receptor-associated signaling molecules in human lupus. Autoimmunity 33:213–224

    CAS  PubMed  Google Scholar 

  76. Miyagawa H, Yamai M, Sakaguchi D, Kiyohara C, Tsukamoto H, Kimoto Y, Nakamura T, Lee JH, Tsai C-Y, Chiang B-L et al (2008) Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. Rheumatology (Oxford) 47:158–164

    CAS  Google Scholar 

  77. Croker BA, Lawson BR, Rutschmann S, Berger M, Eidenschenk C, Blasius AL, Moresco EMY, Sovath S, Cengia L, Shultz LD et al (2008) Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc Natl Acad Sci U S A 105:15028–15033

    CAS  PubMed Central  PubMed  Google Scholar 

  78. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S, Cao X (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9:542–550

    CAS  PubMed  Google Scholar 

  79. Kubo T, Uchida Y, Watanabe Y, Abe M, Nakamura A, Ono M, Akira S, Takai T (2009) Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity. J Exp Med 206:1971–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nakano-Yokomizo T, Tahara-Hanaoka S, Nakahashi-Oda C, Nabekura T, Tchao NK, Kadosaki M, Totsuka N, Kurita N, Nakamagoe K, Tamaoka A et al (2011) The immunoreceptor adapter protein DAP12 suppresses B lymphocyte-driven adaptive immune responses. J Exp Med. doi:10.1084/jem.20101623

    PubMed Central  PubMed  Google Scholar 

  81. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Koncz G, Tóth GK, Bökönyi G, Kéri G, Pecht I, Medgyesi D, Gergely J, Sármay G (2001) Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein. Eur J Biochem 268:3898–3906

    CAS  PubMed  Google Scholar 

  83. Arechiga AF, Habib T, He Y, Zhang X, Zhang Z-Y, Funk A, Buckner JH (2009) Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J Immunol 182:3343–3347

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Dai X, James RG, Habib T, Singh S, Jackson S, Khim S, Moon RT, Liggitt D, Wolf-Yadlin A, Buckner JH et al (2013) A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J Clin Invest 123:2024–2036

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang X, Li J-P, Kuo H-K, Chiu L-L, Dement GA, Lan J-L, Chen D-Y, Yang C-Y, Hu H, Tan T-H (2012) Down-regulation of B cell receptor signaling by hematopoietic progenitor kinase 1 (HPK1)-mediated phosphorylation and ubiquitination of activated B cell linker protein (BLNK). J Biol Chem 287:11037–11048

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N, Krystal G, Humphries RK (2000) A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of b lymphocytes in ship -/- mice. J Exp Med 191:781–794

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Brauweiler A, Tamir I, Dal Porto J, Benschop RJ, Helgason CD, Humphries RK, Freed JH, Cambier JC (2000) Differential regulation of B cell development, activation, and death by the Src homology 2 domain-containing 5′ inositol phosphatase (Ship). J Exp Med 191:1545–1554

    CAS  PubMed Central  PubMed  Google Scholar 

  88. O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li Q-Z, Cambier JC (2011) Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35:746–756

    PubMed Central  PubMed  Google Scholar 

  89. Leung W-H, Tarasenko T, Biesova Z, Kole H, Walsh ER, Bolland S (2013) Aberrant antibody affinity selection in SHIP-deficient B cells. Eur J Immunol 43:371–381

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Ono M, Bolland S, Tempst P, Ravetch JV (1996) Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 383:263–266

    CAS  PubMed  Google Scholar 

  91. Bolland S, Pearse RN, Kurosaki T, Ravetch JV (1998) SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 8:509–516

    CAS  PubMed  Google Scholar 

  92. Carver DJ, Aman MJ, Ravichandran KS (2000) SHIP inhibits Akt activation in B cells through regulation of Akt membrane localization. Blood 96:1449–1456

    CAS  PubMed  Google Scholar 

  93. Tamir I, Stolpa JC, Helgason CD, Nakamura K, Bruhns P, Daëron M, Cambier JC (2000) The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 12:347–358

    CAS  PubMed  Google Scholar 

  94. Maxwell MJ, Duan M, Armes JE, Anderson GP, Tarlinton DM, Hibbs ML (2011) Genetic segregation of inflammatory lung disease and autoimmune disease severity in SHIP-1-/- mice. J Immunol 186:7164–7175

    CAS  PubMed  Google Scholar 

  95. Crowley JE, Stadanlick JE, Cambier JC, Cancro MP (2009) FcgammaRIIB signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation. Blood 113:1464–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Brauweiler A, Tamir I, Marschner S, Helgason CD, Cambier JC (2001) Partially distinct molecular mechanisms mediate inhibitory FcgammaRIIB signaling in resting and activated B cells. J Immunol 167:204–211

    CAS  PubMed  Google Scholar 

  97. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A 94:9052–9057

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    CAS  PubMed  Google Scholar 

  99. Anzelon AN, Wu H, Rickert RC (2003) Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol 4:287–294

    CAS  PubMed  Google Scholar 

  100. Suzuki A, Kaisho T, Ohishi M, Tsukio-Yamaguchi M, Tsubata T, Koni PA, Sasaki T, Mak TW, Nakano T (2003) Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 197:657–667

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Cheng S, Hsia CY, Feng B, Liou M-L, Fang X, Pandolfi PP, Liou H-C (2009) BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res 19:196–207

    CAS  PubMed  Google Scholar 

  102. Brown KS, Blair D, Reid SD, Nicholson EK, Harnett MM (2004) FcγRIIb-mediated negative regulation of BCR signalling is associated with the recruitment of the MAPkinase-phosphatase, Pac-1, and the 3′-inositol phosphatase, PTEN. Cell Signal 16:71–80

    CAS  PubMed  Google Scholar 

  103. Yamanashi Y, Tamura T, Kanamori T, Yamane H, Nariuchi H, Yamamoto T, Baltimore D (2000) Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev 14:11–16

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Lemay S, Davidson D, Latour S, Veillette A (2000) Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol Cell Biol 20:2743–2754

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Stork B, Neumann K, Goldbeck I, Alers S, Kähne T, Naumann M, Engelke M, Wienands J (2007) Subcellular localization of Grb2 by the adaptor protein Dok-3 restricts the intensity of Ca2+ signaling in B cells. EMBO J 26:1140–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lösing M, Goldbeck I, Manno B, Oellerich T, Schnyder T, Bohnenberger H, Stork B, Urlaub H, Batista FD, Wienands J et al (2013) The Dok-3/Grb2 protein signal module attenuates Lyn kinase-dependent activation of Syk kinase in B cell antigen receptor microclusters. J Biol Chem 288:2303–2313

    PubMed Central  PubMed  Google Scholar 

  107. Ng C-H, Xu S, Lam K-P (2007) Dok-3 plays a nonredundant role in negative regulation of B-cell activation. Blood 110:259–266

    CAS  PubMed  Google Scholar 

  108. Aiba Y, Yamazaki T, Okada T, Gotoh K, Sanjo H, Ogata M, Kurosaki T (2006) BANK negatively regulates Akt activation and subsequent B cell responses. Immunity 24:259–268

    CAS  PubMed  Google Scholar 

  109. Kozyrev SV, Abelson A-K, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt G, Jönsen A et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216

    CAS  PubMed  Google Scholar 

  110. Dieudé P, Wipff J, Guedj M, Ruiz B, Melchers I, Hachulla E, Riemekasten G, Diot E, Hunzelmann N, Sibilia J et al (2009) BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum 60:3447–3454

    PubMed  Google Scholar 

  111. Medgyesi D, Hobeika E, Biesen R, Kollert F, Taddeo A, Voll RE, Hiepe F, Reth M (2014) The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity. J Exp Med 211:427–440

    CAS  PubMed Central  PubMed  Google Scholar 

  112. McAlees JW, Sanders VM (2009) Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 29:675–686

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Davidson D, Veillette A (2001) PTP-PEST, a scaffold protein tyrosine phosphatase, negatively regulates lymphocyte activation by targeting a unique set of substrates. EMBO J 20:3414–3426

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Qian Y, Qin J, Cui G, Naramura M, Snow EC, Ware CF, Fairchild RL, Omori SA, Rickert RC, Scott M et al (2004) Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 21:575–587

    CAS  PubMed  Google Scholar 

  115. Qian Y, Schiemann B, Giltiay N, Gommerman JL, Xiao J, Vora K, Wang Y, Cachero TG, Tian J, Shulga-Morskaya S et al (2008) Deficiency of Act1, a critical modulator of B cell function, leads to development of Sjögren’s syndrome. Eur J Immunol 38:2219–2228

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Hüffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, Juneblad K, Apel M, McManus R, Ho P et al (2010) Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet 42:996–999

    PubMed Central  PubMed  Google Scholar 

  117. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Strange A, Capon F, Spencer CCA, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42:985–990

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, Belouchi M, Fournier H, Reinhard C, Ding J et al (2010) Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet 42:991–995

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Perricone C, Ciccacci C, Ceccarelli F, Di Fusco D, Spinelli FR, Cipriano E, Novelli G, Valesini G, Conti F, Borgiani P (2013) TRAF3IP2 gene and systemic lupus erythematosus: association with disease susceptibility and pericarditis development. Immunogenetics 65:703–709

    CAS  PubMed  Google Scholar 

  120. Buchta CM, Bishop GA (2014) TRAF5 negatively regulates TLR signaling in B lymphocytes. J Immunol 192:145–150

    CAS  PubMed  Google Scholar 

  121. Brummelkamp TR, Nijman SMB, Dirac AMG, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424:797–801

    CAS  PubMed  Google Scholar 

  122. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424:801–805

    CAS  PubMed  Google Scholar 

  123. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424:793–796

    CAS  PubMed  Google Scholar 

  124. Yoshida H, Jono H, Kai H, Li J-D (2005) The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem 280:41111–41121

    CAS  PubMed  Google Scholar 

  125. Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JMJ, Jain A (2006) Impaired regulation of NF-κB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest 116:3042–3049

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Jin W, Reiley WR, Lee AJ, Wright A, Wu X, Zhang M, Sun S-C (2007) Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J Biol Chem 282:15884–15893

    CAS  PubMed  Google Scholar 

  127. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699

    CAS  PubMed  Google Scholar 

  128. Shembade N, Ma A, Harhaj EW (2010) Inhibition of NF- B signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327:1135–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L, Barrera J, Lowell CA, Utz PJ, Malynn BA et al (2010) The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 33:181–191

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Chu Y, Vahl JC, Kumar D, Heger K, Bertossi A, Wójtowicz E, Soberon V, Schenten D, Mack B, Reutelshöfer M et al (2011) B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice. Blood 117:2227–2236

    CAS  PubMed  Google Scholar 

  131. Hövelmeyer N, Reissig S, Thi Xuan N, Adams-Quack P, Lukas D, Nikolaev A, Schlüter D, Waisman A (2011) A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur J Immunol 41:595–601

    PubMed  Google Scholar 

  132. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PIW, Maller J, Pe’er I, Burtt NP, Blumenstiel B, DeFelice M et al (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:1477–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP, Guiducci C, Parkin M, Gates C et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40:1059–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, Shifrin N, Petri MA, Kamboh MI, Manzi S et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40:1062–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hu H, Brittain GC, Chang J-H, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu Y-X et al (2013) OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494:371–374

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Liu X, Chen W, Wang Q, Li L, Wang C (2013) Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog 9:e1003480

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Tanaka T, Grusby MJ, Kaisho T (2007) PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 8:584–591

    CAS  PubMed  Google Scholar 

  138. Qiao G, Lei M, Li Z, Sun Y, Minto A, Fu Y-X, Ying H, Quigg RJ, Zhang J (2007) Negative regulation of CD40-mediated B cell responses by E3 ubiquitin ligase Casitas-B-lineage lymphoma protein-B. J Immunol 179:4473–4479

    CAS  PubMed  Google Scholar 

  139. Rao N (2001) The non-receptor tyrosine kinase Syk is a target of Cbl-mediated ubiquitylation upon B-cell receptor stimulation. EMBO J 20:7085–7095

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Sohn HW, Gu H, Pierce SK (2003) Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J Exp Med 197:1511–1524

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Kitaura Y, Jang IK, Wang Y, Han Y-C, Inazu T, Cadera EJ, Schlissel M, Hardy RR, Gu H (2007) Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity 26:567–578

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Kawagoe T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, Tsujimura T, Akira S (2009) TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10:965–972

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Jin J, Xiao Y, Chang J-H, Yu J, Hu H, Starr R, Brittain GC, Chang M, Cheng X, Sun S-C (2012) The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat Immunol 13:1101–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Xie P, Poovassery J, Stunz LL, Smith SM, Schultz ML, Carlin LE, Bishop GA (2011) Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J Leukoc Biol 90:1149–1157

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Troutman TD, Hu W, Fulenchek S, Yamazaki T, Kurosaki T, Bazan JF, Pasare C (2012) Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proc Natl Acad Sci U S A 109:273–278

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Ni M, MacFarlane AW, Toft M, Lowell CA, Campbell KS, Hamerman JA (2012) B-cell adaptor for PI3K (BCAP) negatively regulates Toll-like receptor signaling through activation of PI3K. Proc Natl Acad Sci U S A 109:267–272

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Recher M, Burns SO, de la Fuente MA, Volpi S, Dahlberg C, Walter JE, Moffitt K, Mathew D, Honke N, Lang PA (2012) B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119:2819–2828

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu C, Sather BD, Khim S, Liggitt D, Song W et al (2011) WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med 208:2033–2042

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CIM, Westerberg LS, Snapper SB, Zhao X, Song W (2013) N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol 11:e1001704

    PubMed Central  PubMed  Google Scholar 

  150. Edwards JC, Cambridge G (2001) Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology (Oxford) 40:205–211

    CAS  Google Scholar 

  151. Leandro MJ, Edwards JC, Cambridge G, Ehrenstein MR, Isenberg DA (2002) An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 46:2673–2677

    PubMed  Google Scholar 

  152. Nakken B, Munthe LA, Konttinen YT, Sandberg AK, Szekanecz Z, Alex P, Szodoray P (2011) B-cells and their targeting in rheumatoid arthritis–current concepts and future perspectives. Autoimmun Rev 11:28–34

    CAS  PubMed  Google Scholar 

  153. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM, Roda JM, Cheney C, Mo X, Lehman A et al (2010) CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain-engineered monoclonal antibody. Blood 115:1204–1213

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Li Y, Chen F, Putt M, Koo YK, Madaio M, Cambier JC, Cohen PL, Eisenberg RA (2008) B cell depletion with anti-CD79 mAbs ameliorates autoimmune disease in MRL/lpr mice. J Immunol 181:2961–2972

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Hardy IR, Anceriz N, Rousseau F, Seefeldt MB, Hatterer E, Irla M, Buatois V, Chatel LE, Getahun A, Fletcher A et al (2014) Anti-CD79 antibody induces B cell anergy that protects against autoimmunity. J Immunol 192:1641–1650

    CAS  PubMed  Google Scholar 

  156. Dörner T, Radbruch A, Burmester GR (2009) B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol 5:433–441

    PubMed  Google Scholar 

  157. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755

    CAS  PubMed  Google Scholar 

  158. Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C, Sylvain C, Ring ER, Shields J, Jiang J et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15:781–787

    CAS  PubMed  Google Scholar 

  159. Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, Barnard J, Nevarez S, Goldman BI, Kirk CJ et al (2012) Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 64:493–503

    CAS  PubMed  Google Scholar 

  160. Gadina M (2014) Advances in kinase inhibition: treating rheumatic diseases and beyond. Curr Opin Rheumatol 26:237–243

    CAS  PubMed  Google Scholar 

  161. Ho L-J, Lai J-H (2014) Small-molecule inhibitors for autoimmune arthritis: success, failure and the future. Eur J Pharmacol. doi:10.1016/j.ejphar.2014.08.031

    Google Scholar 

  162. Ball J, Archer S, Ward S (2014) PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discov Today 19:1195–1199

    CAS  PubMed  Google Scholar 

  163. Zheng X, Suzuki M, Zhang X, Ichim TE, Zhu F, Ling H, Shunnar A, Wang MH, Garcia B, Inman RD et al (2010) RNAi-mediated CD40-CD154 interruption promotes tolerance in autoimmune arthritis. Arthritis Res Ther 12:R13

    PubMed Central  PubMed  Google Scholar 

  164. Fairfax K, Mackay IR, Mackay F (2012) BAFF/BLyS inhibitors: a new prospect for treatment of systemic lupus erythematosus. IUBMB Life 64:595–602

    CAS  PubMed  Google Scholar 

  165. Connolly DJ, O’Neill LAJ (2012) New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol 12:510–518

    CAS  PubMed  Google Scholar 

  166. Liossis SN, Solomou EE, Dimopoulos MA, Panayiotidis P, Mavrikakis MM, Sfikakis PP (2001) B-cell kinase lyn deficiency in patients with systemic lupus erythematosus. J Investig Med 49:157–165

    CAS  PubMed  Google Scholar 

  167. Vang T, Miletic AV, Bottini N, Mustelin T (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40:453–461

    CAS  PubMed  Google Scholar 

  168. Batliwalla FM, Li W, Ritchlin CT, Xiao X, Brenner M, Laragione T, Shao T, Durham R, Kemshetti S, Schwarz E et al (2005) Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol Med 11:21–29

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q (2011) Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 37:180–189

    CAS  PubMed  Google Scholar 

  170. Potter C, Eyre S, Cope A, Worthington J, Barton A (2007) Investigation of association between the TRAF family genes and RA susceptibility. Ann Rheum Dis 66:1322–1326

    PubMed Central  PubMed  Google Scholar 

  171. Graham JP, Arcipowski KM, Bishop GA (2010) Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev 237:226–248

    CAS  PubMed  Google Scholar 

  172. Bergholdt R, Taxvig C, Eising S, Nerup J, Pociot F (2005) CBLB variants in type 1 diabetes and their genetic interaction with CTLA4. J Leukoc Biol 77:579–585

    CAS  PubMed  Google Scholar 

  173. Gómez-Martín D, Ibarra-Sánchez M, Romo-Tena J, Cruz-Ruíz J, Esparza-López J, Galindo-Campos M, Díaz-Zamudio M, Alcocer-Varela J (2013) Casitas B lineage lymphoma b is a key regulator of peripheral tolerance in systemic lupus erythematosus. Arthritis Rheum 65:1032–1042

    PubMed  Google Scholar 

  174. Higgs HN, Pollard TD (1999) Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol Chem 274:32531–32534

    CAS  PubMed  Google Scholar 

  175. Schurman SH, Candotti F (2003) Autoimmunity in Wiskott-Aldrich syndrome. Curr Opin Rheumatol 15:446–453

    CAS  PubMed  Google Scholar 

  176. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through SFB746 and TRR130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Medgyesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobeika, E., Nielsen, P.J. & Medgyesi, D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med 93, 143–158 (2015). https://doi.org/10.1007/s00109-015-1252-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1252-8

Keywords

Navigation