Skip to main content
Log in

Blood-brain barrier interfaces and brain tumors

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability.J. Anat., 200, 629–638 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Abbott, N. J., Astrocyte-endothelial interactions and blood-brain barrier permeability.J. Anat., 200, 629–638 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B., and Gardner, T. W., Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors.J. Biol. Chem., 274, 23463–23467 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, H. C. and Bauer, H., Neural induction of the blood-brain barrier: still an enigma.Cell. Mol Neurobiology 20, 13–28 (2000).

    Article  CAS  Google Scholar 

  • Bazzoni, G., The JAM family of junctional adhesion molecules.Curr. Opin. Cell Biol., 15, 525–530 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Breier, G., Albrecht, U., Sterrer, S., and Risau, W., Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation.Development, 114, 521–532 (1992).

    PubMed  CAS  Google Scholar 

  • Breier, G., Breviario, F., Caveda, L., Berthier, R., Schnurch, H., Gotsch, U., Vestweber, D., Risau, W., and Dejana, E., Molecular cloning and expression of murine vascular endothelialcadherin in early stage development of cardiovascular system.Blood, 87, 630–641 (1996).

    PubMed  CAS  Google Scholar 

  • Bunn, H. F. and Poyton, R. O., Oxygen sensing and molecular adaptation to hypoxia.Physiol. Rev., 76, 839–885 (1996).

    PubMed  CAS  Google Scholar 

  • Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele.Nature, 380, 435–439 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J., Cingulin, a new peripheral component of tight junctions.Nature, 333, 272–276 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Collins, V. P., Cellular mechanisms targeted during astrocytoma progression.Cancer Lett., 188, 1–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M. G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., McDonald, D. M., and Ward, P. A., Dejana, E., Vascular endothelial-cadherin is an important determinant of microvascular integrityin vivo.Proc. Natl. Acad. Sci. U.S.A., 96, 9815–9820 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cordon-Cardo, C., O'Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., and Bertino, J. R., Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.Pro.c Natl. Acad. Sci. U.S.A., 86, 695–698 (1989).

    Article  CAS  Google Scholar 

  • Dehouck, M. P., Vigne, P., Torpier, G., Breittmayer, J. P., Cecchelli, R., and Frelin, C., Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries.J. Cereb. Blood Flow. Metab., 17, 464–469 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Demeule, M., Regina, A., Jodoin, J., Laplante, A., Dagenais, C., Berthelet, F., Moghrabi, A., and Beliveau, R., Drug transport to the brain: Key roles for the efflux pumpp-glycoprotein in the blood-brain barrier.Vas. Pharm., 38, 339–348 (2002).

    Article  CAS  Google Scholar 

  • Duelli, R. and Kuschinsky, W., Brain glucose transporters: relationship to local energy demand.News Physiol. Sci., 16, 71–76 (2001).

    PubMed  CAS  Google Scholar 

  • Enge, M., Bjarnegard, M., Gerhardt, H., Gustafsson, E., Kalen, M., Asker, N., Hammes, H. P., Shani, M., Fassler, R., and Betsholtz, C., Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy.EMBO J., 21, 4307–4316 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, B., Development of the blood-brain barrier.Cell Tissue Res., 314, 119–129 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fanning, A. S., Jameson, B. J., Jesaitis, L. A., and Anderson, J. M., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton.J. Biol. Chem., 273, 29745–29753 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N. and Henzel, W. J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.Biochem. Biophys. Res. Commun., 161, 851–858 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Fundamental concepts of the angiogenic process.Curr. Mol. Med., 3, 643–651 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fried, B. M. and Buckley, R. C., Primary carcinoma of the lungs.Arch. Pathol., 9, 483–527 (1930).

    Google Scholar 

  • Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S., Claudin-1 and-2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.J. Cell Biol., 141, 1539–1550 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S., Occludin: a novel integral membrane protein localizing at tight junctions.J. Cell Biol., 123, 1777–1788 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D., Establishment and functional characterization of anin vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes.Eu.r J. Pharm. Sci., 12, 215–222 (2001).

    Article  CAS  Google Scholar 

  • Gelman, I. H., The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development.Front. Biosci., 7, d1782-d1797 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Genbacev, O., Zhou, Y., Ludlow, J. W., and Fisher, S. J., Regulation of human placental development by oxygen tension.Science, 277, 1669–1672 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gloor, S. M., Wachtel, M., Bolliger, M. F., Ishihara, H., Landmann, R., and Frei, K., Molecular and cellular permeability control at the blood-brain barrier.Brain Res. Brain Res. Rev., 36, 258–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Guerin, C., Laterra, J., Hruban, R. H., Brem, H., Drewes, L. R., and Goldstein, G. W., The glucose transporter and bloodbrain barrier of human brain tumors.Ann. Neurol., 28, 758–765 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Harik, S. I., Kalaria, R. N., Andersson, L., Lundahl, P., and Perry, G., Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions.J. Neurosci., 10, 3862–3872 (1990).

    PubMed  CAS  Google Scholar 

  • Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R., ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin,J. Cell Biol., 141, 199–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hirase, T., Staddon, J. M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Tsukita, S., and Rubin, L. L., Occludin as a possible determinant of tight junction permeability in endothelial cells.J. Cell Sci., 110, 1603–1613 (1997).

    PubMed  CAS  Google Scholar 

  • Huber, J. D., Egleton, R. D., and Davis, T. P., Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier.Trends Neurosci., 24, 719–725 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N., Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier.Biochem. Biophys. Res. Commu., n 261, 108–112 (1999).

    Article  CAS  Google Scholar 

  • Itoh, M., Furuse, M., Morita, K., Kubota, K., Saitou, M., and Tsukita, S., Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.J. Cell Biol., 147, 1351–1363 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., Morita, K., and Tsukita, S. H., Characterization of ZO-2 as a MAGUK family member associated with tight and adherens junctions with a binding affinity to occludin and α-catenin.J. Biol. Chem., 274, 5981–5986 (1999b).

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., Sasaki, H., Furuse, M., Ozaki, H., Kita, T., and Tsukita, S., Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions.J. Cell Biol., 154, 491–497 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., Gassmann, M., Gearhart, J. D., Lawler, A. M., Yu, A. Y., and Semenza, G. L., Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha.Genes Dev., 12, 149–162 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Janzer, R. C. and Raff, M. C., Astrocytes induce blood-brain barrier properties in endothelial cells.Nature, 325, 253–257 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., and Jessell, T. M., Appendix B, Ventricular organization of cerebrospinal fluid: Blood-brain barrier, brain edema, and hydrocephalus, in: Principles of neural science (4th Eds). McGraw-Hill Companies, U.S.A., pp. 1288–1301 (2000).

    Google Scholar 

  • Kaur, B., Khwaja, F. W., Severson, E. A., Mathenyh, S. L., Brat, D. J., and Van Meir, E. V., Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis.Neurooncol., 7, 134–153 (2005).

    CAS  Google Scholar 

  • Kleihues P. and Cavanee W. K., (Eds.), Tumors of the Nervous System. World Health Organization Classification of Tumors. Pathology and Genetics. IARC Press, Vol 1., Lyon (2000).

    Google Scholar 

  • Lampugnani, M. G., Corada, M., Caveda, L., Breviario, F., Ayalon, O., Geiger, B., and Dejana, E., The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin).J. Cell Biol., 129, 203–217 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y. J., and Kim, K. W., SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier.Nat. Med., 9, 900–906 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., Raleigh, J. A., Chung, H. Y., Yoo, M. A., and Kim, K. W., Determination of hypoxic region by hypoxia marker in developing mouse embryosin vivo: a possible signal for vessel development.Dev. Dyn., 220, 175–186 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Liebner, S., Fischmann, A., Rascher, G., Duffner, F., Grote, E. H., Kalbacher, H., and Wolburg, H., Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiform.Acta Neuropathol., 100, 323–331 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C., Pericyte loss and microaneurysm formation in PDGF-B-dificient mice.Science 277, 242–245 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Maher, F., Vannucci, S. J., and Simpson, I. A., Glucose transporter proteins in brain.FASEB J., 8, 1003–1011 (1994).

    PubMed  CAS  Google Scholar 

  • Maisonpierre, P. C., Suri, C., Jones, P.F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.Science, 277, 55–60 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Maltepe, E., and Simon, M. C., Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development.J. Mo. I Med., 76, 391–401 (1998).

    Article  CAS  Google Scholar 

  • Manley, G. T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A. W., Chan, P., and Verkman, A. S., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke.Nat. Med., 6, 159–163 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E., Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.J. Cell. Biol., 142, 117–127 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Matter, K., and Balda, M. S., Holey barrier: claudins and the regulation of brain endothelial permeability.J. Cell Biol., 161, 459–460 (2003).

    Article  PubMed  CAS  Google Scholar 

  • McCarty, J. H., Monahan-Earley, R. A., Brown, L. F., Keller, M., Gerhardt, H., Rubin, K., Shani, M., Dvorak, H. F., Wolburg, H., Bader, B. L., Dvorak, A. M., and Hynes, R. O., Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins.Mol. Cell Biol., 22, 7667–7677 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Mi, H., Haeberle, H., and Barres, B. A., Induction of astrocyte differentiation by endothelial cells.J. Neurosci., 21, 1538–1547 (2001).

    PubMed  CAS  Google Scholar 

  • Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., and Risau, W., A., Ullrich, High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis.Cell, 72, 835–846 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Minagar, A., Long, A., Ma, T., Jackson, T. H., Kelley, R. E., Ostanin, D. V., Sasaki, M., Warren, A. C., Jawahar, A., Cappell, B., and Alexander, J. S., Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier.Endothelium, 10, 299–307 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S., Claudin-11/OSP-based tight junctions of myelin sheaths in brain and sertoli cells in testis.J. Cell Biol., 145, 579–588 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nag, S., The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model.Trends Mol. Med., 8, 38–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu, S., Kornhauser, J. M., Burant, C. F., Seino, S., Mayo, K. E., and Bell, G. I., Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization.J. Biol. Chem., 267, 467–472 (1992).

    PubMed  CAS  Google Scholar 

  • Nicchia, G. P., Frigeri, A., Liuzzi, G. M., and Svelto, M., Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes.FASEB J., 17, 1508–1510 (2003).

    PubMed  CAS  Google Scholar 

  • Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier.Brain Res. Dev. Brain Res., 114, 161–169 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nico, B., Quondamatteo, F., Herken, R., Marzullo, A., Corsi, P., Bertossi, M., Russo, G., Ribatti, D., and Roncali, L., Developmental expression of ZO-1 antigen in the mouse blood-brain barrier.Brain Res. Dev. Brain Res., 114, 161–169 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.J. Cell Biol., 161, 653–660 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T. D., Willhoite, A. R., and Gage, F. H., Vascular niche for adult hippocampal neurogenesis.J. Comp. Neurol., 425, 479–494 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos, M. C., Saadoun, S., Woodrow, C. J., Davies, D. C., Costa-Martins, P., Moss, R. F., Krishna, S., and Bell, B. A., Occludin expression in microvessels of neoplastic and non-neoplastic human brain.Neuropathol. Appl. Neurobiol., 27, 384–395 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Boado, R. J., and Farrell, C. R., Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization.J. Biol. Chem., 265, 18035–18040 (1990).

    PubMed  CAS  Google Scholar 

  • Petty, M. A., and Wettstein, J. G., Elements of cerebral microvascular ischaemia.Brain Res. Brain Res. Rev., 36, 23–34 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Plate, K. H., Breier, G., Weich, H. A., Mennel, H. D., and Risau, W., Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms.Int. J. Cancer, 59, 520–529 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Plate, K. H., Mechanism of angiogenesis in the brain.J. Neuropathol. Exp. Neurol., 58, 313–320 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ramsauer, M., Krause, D., and Dermietzel, R., Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes.FASEB J., 16, 1274–1276 (2002).

    PubMed  CAS  Google Scholar 

  • Rascher, G., Fischmann, A., Kroger, S., Duffner, F., Grote, E. H., and Wolburg, H., Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin.Acta Neuropathol. (Berl), 104, 85–91 (2002).

    Article  CAS  Google Scholar 

  • Reuss, B., Dono, R., and Unsicker, K., Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood-brain barrier permeability: evidence from mouse mutants.J. Neurosci., 23, 6404–6412 (2003).

    PubMed  CAS  Google Scholar 

  • Richards, L. J., Kilpatrick, T. J., Dutton, R., Tan, S. S., Gearing, D. P., Bartlett, P. F., and Murphy, M., Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord.Eur. J. Neurosci., 8, 291–299 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Rieckmann, P., and Engelhardt, B., Building up the blood-brain barrier.Nat. Med., 9, 828–829 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., and Wolburg, H., Development of the BBB.Trends Neurosci., 13, 174–178 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Mechanisms of angiogenesis.Nature, 386, 671–674 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A., and Krishna, S., Increased aquaporin 1 water channel expression in human brain tumours.Br. J. Cancer, 87, 621–623 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Saadoun, S., Papadopoulos, M. C., Davies, D. C., Krishna, S., and Bell, B. A., Aquaporin-4 expression is increased in oedematous human brain tumours.J. Neurol. Neurosurg. Psychiatry, 72, 262–265 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Saitou, M., Furuse, M., Sasaki, H., Schulzke, J. D., Fromm, M., Takano, H., Noda, T., and Tsukita, S., Complex phenotype of mice lacking occludin, a component of tight junction strands.Mol. Biol. Cell, 11, 4131–4142 (2000).

    PubMed  CAS  Google Scholar 

  • Sandercoe, T. M., Geller, S. F., Hendrickson, A. E., Stone, J., and Provis, J. M., VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia.J. Comp. Neurol., 462, 42–54 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Savettieri, G. Di, Liegro, I., Catania, C., Licata, L., Pitarresi, G. L., D'Agostino, S., Schiera, G., De Caro, V., Giandalia, G., Giannola, L. I., and Cestelli, A., Neurons and ECM regulate occludin localization in brain endothelial cells.Neuroreport 11, 1081–1084 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Schiera, G., Bono, E., Raffa, M. P., Gallo, A., Pitarresi, G. L., Di Liegro, I., and Savettieri, G., Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture.J. Cell. Mol. Med., 7, 165–170 (2003).

    Article  PubMed  Google Scholar 

  • Schnadelbach, O., Blaschuk, O. W., Symonds, M., Gour, B. J., Doherty, P., and Fawcett, J. W.,N-cadherin influences migration of ologodendrocytes on astrocyte monolayers.Mol. Cell Neurosci., 15, 288–302 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Small, R. K., Watkins, B. A., Munro, P. M., and Liu, D., Functional properties of retinal Muller cells following transplantation to the anterior eye chamber.Glia, 7, 158–169 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S. W., Kim, C. W., and Kim, K. W., Oxygen tension regulates the maturation of the blood-brain barrier.Biochem. Biophys. Res. Commun., 290, 325–331 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Staddon, J. M., and Rubin, L. L., Cell adhesion, cell junctions and the blood-brain barrier.Curr. Opin. Neurobiol., 6, 622–627 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Takano, S., Yoshii, Y., Kondo, S., Suzuki, H., Maruno, T., Shirai, S., and Nose, T., Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients.Cancer Res., 56, 2185–2190 (1996).

    PubMed  CAS  Google Scholar 

  • Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C., Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein.J. Histochem. Cytochem., 37, 159–164 (1989).

    PubMed  CAS  Google Scholar 

  • Tran, N. D., Correale, J., Schreiber, S. S., and Fisher, M., Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors.Stroke, 30, 1671–1678 (1999).

    PubMed  CAS  Google Scholar 

  • Utsumi, H., Chiba, H., Kamimura, Y., Osanai, M., Igarashi, Y., Tobioka, H., Mori, M., and Sawada, N., Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB.Am. J. Physiol. Cell Physiol., 279, C361-C368 (2000).

    PubMed  CAS  Google Scholar 

  • Valter, M. M., Hugel, A., Huang, H. J., Cavenee, W. K., Wiestler, O. D., Pietsch, T., and Wernert, N., Expression of the Ets-1 transcription factor in human astrocytomas is associated with Fms-like tyrosine kinase-1 (Flt-1)/vascular endothelial growth factor receptor-1 synthesis and neoangiogenesis.Cancer Res., 59, 5608–5614 (1999).

    PubMed  CAS  Google Scholar 

  • Verkman, A. S., and Mitra, A. K., Structure and function of aquaporin water channels.Am. J. Pathology, 78, F13-F28 (2001).

    Google Scholar 

  • Verkman, A. S., Aquaporin water channels and endothelial cell function.J. Anat., 200, 617–627 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E., and Pessin, J. E., Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells.J. Biol. Chem., 263, 15594–15601 (1988).

    PubMed  CAS  Google Scholar 

  • Wang, W., Dentler, W. L., and Borchardt, R. T., VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly.Am. J. Physiol. Heart Circ. Physiol, 280, H434-H440 (2001).

    PubMed  CAS  Google Scholar 

  • Wolburg, H., and Lippoldt, A., Tight junctions of the blood-brain barrier: Development, composition and regulation.Vas. Pharmacol., 38, 323–337 (2002).

    Article  CAS  Google Scholar 

  • Wolburg, H., Wolburg-Buchholz, K., Kraus, J., Rascher-Eggstein, G., Liebner, S., Hamm, S., Duffner, F., Grote, E. H., Risau, W., and Engelhardt, B., Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme.Acta Neuropathol., 105, 586–592 (2003).

    PubMed  CAS  Google Scholar 

  • Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J., Vascular-specific growth factors and blood vessel formation.Nature, 407, 242–248 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., and Olsson, Y., Hematogenous metastases of the human brain-characteristics of peritumoral brain changes.J. Neurooncol., 35, 81–89 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Porat, R. M., Alon T., Keshet, E., and Stone, J., Tissue oxygen levels control astrocyte movement and differentiation in developing retina.Brain Res. Dev. Brain Res., 118, 135–145 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Zhong, Y., Saitoh, T., Minase, T., Sawada, N., Enomoto, K., and Mori, M., Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2.J. Cell Biol., 120 477–483 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SW., Kim, W.J., Park, J.A. et al. Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 29, 265–275 (2006). https://doi.org/10.1007/BF02968569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02968569

Key words

Navigation