Skip to main content

Role of Cerebral Endothelial Tight Junctions in the Formation of Brain Tumors

  • Chapter
  • First Online:
Tight Junctions

Abstract

Malignant brain tumors are devastating conditions, characterized by limited survival of the patients. In order to widen the therapeutic possibilities targeting cerebral malignancies, we have to understand the mechanisms of their development. In this chapter, we review the involvement of tight junctions (TJs) of cerebral endothelial cells in the formation of brain cancers. Two main aspects will be discussed. First, we cover the mechanisms of opening of the TJs of the blood-brain barrier (BBB) during paracellular extravasation of metastatic cells. In this process, proteolytic mechanisms, induction of endothelial-mesenchymal transition, release of extracellular vesicles, and modulation of cells of the neurovascular unit take the most important roles. Second, we introduce the blood-tumor barrier (BTB), that is, the altered vasculature of both primary and secondary brain tumors. Although leakier in general than the intact BBB, the BTB restricts the majority of drugs to reach cytotoxic concentrations in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dias, K., et al., Claudin-Low Breast Cancer; Clinical & Pathological Characteristics. PLoS One, 2017. 12(1): p. e0168669.

    Google Scholar 

  2. Harrell, J.C., et al., Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat, 2012. 132(2): p. 523-35.

    Google Scholar 

  3. Izraely, S., et al., The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis. Int J Cancer, 2015. 136(6): p. 1296-307.

    Google Scholar 

  4. Figueira, I., et al., Picturing Breast Cancer Brain Metastasis Development to Unravel Molecular Players and Cellular Crosstalk. Cancers (Basel), 2021. 13(4).

    Google Scholar 

  5. Nag S., B.D.J., Blood–brain barrier, exchange of metabolites and gases, in Pathology and Genetics: Cerebrovascular Diseases. , H. Kalimo, Editor. 2005, Basel: ISN Neuropath Press. p. p. 22 - 29.

    Google Scholar 

  6. Zihni, C., et al., Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol, 2016. 17(9): p. 564-80.

    Google Scholar 

  7. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 2003. 161(3): p. 653-60.

    Google Scholar 

  8. Iwamoto, N., T. Higashi, and M. Furuse, Localization of angulin-1/LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo. Cell Struct Funct, 2014. 39(1): p. 1-8.

    Google Scholar 

  9. Bauer, H.C., et al., “You Shall Not Pass”-tight junctions of the blood brain barrier. Front Neurosci, 2014. 8: p. 392.

    Google Scholar 

  10. Wilhelm, I., C. Fazakas, and I.A. Krizbai, In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars), 2011. 71(1): p. 113-28.

    Google Scholar 

  11. Vannier, A., et al., Diffuse subependymal periventricular metastases. Report of three cases. Cancer, 1986. 58(12): p. 2720-5.

    Google Scholar 

  12. Trinh, C.T., et al., A Rare Case of Diffuse Subependymal Periventricular Metastases from Small Cell Lung Carcinoma. Case Rep Oncol, 2020. 13(3): p. 1304-1310.

    Google Scholar 

  13. Lapointe, S., A. Perry, and N.A. Butowski, Primary brain tumours in adults. Lancet, 2018. 392(10145): p. 432-446.

    Google Scholar 

  14. Stark, A.M., et al., Glioblastoma multiforme-report of 267 cases treated at a single institution. Surg Neurol, 2005. 63(2): p. 162-9; discussion 169.

    Google Scholar 

  15. Adamson, C., et al., Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs, 2009. 18(8): p. 1061-83.

    Google Scholar 

  16. Nayak, L., E.Q. Lee, and P.Y. Wen, Epidemiology of brain metastases. Curr Oncol Rep, 2012. 14(1): p. 48-54.

    Google Scholar 

  17. Cohen, J.V., et al., Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res, 2016. 29(6): p. 627-642.

    Google Scholar 

  18. Stelzer, K.J., Epidemiology and prognosis of brain metastases. Surg Neurol Int, 2013. 4(Suppl 4): p. S192-202.

    Google Scholar 

  19. Strell, C. and F. Entschladen, Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal, 2008. 6: p. 10.

    Google Scholar 

  20. Lorger, M. and B. Felding-Habermann, Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol, 2010. 176(6): p. 2958-71.

    Google Scholar 

  21. Kienast, Y., et al., Real-time imaging reveals the single steps of brain metastasis formation. Nat Med, 2010. 16(1): p. 116-22.

    Google Scholar 

  22. Hasko, J., et al., Response of the neurovascular unit to brain metastatic breast cancer cells. Acta Neuropathol Commun, 2019. 7(1): p. 133.

    Google Scholar 

  23. Herman, H., et al., Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. J Cell Mol Med, 2019. 23(4): p. 2619-2631.

    Google Scholar 

  24. Wolff, G., et al., Exercise maintains blood-brain barrier integrity during early stages of brain metastasis formation. Biochem Biophys Res Commun, 2015. 463(4): p. 811-7.

    Google Scholar 

  25. Seelbach, M., et al., Polychlorinated biphenyls disrupt blood-brain barrier integrity and promote brain metastasis formation. Environ Health Perspect, 2010. 118(4): p. 479-84.

    Google Scholar 

  26. Fazakas, C., et al., Transmigration of melanoma cells through the blood-brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PLoS One, 2011. 6(6): p. e20758.

    Google Scholar 

  27. Li, B., et al., Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett, 2006. 580(17): p. 4252-60.

    Google Scholar 

  28. Molnar, J., et al., Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adh Migr, 2016. 10(3): p. 269-81.

    Google Scholar 

  29. Wilhelm, I., et al., Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab, 2018. 38(4): p. 563-587.

    Google Scholar 

  30. Artym, V.V., et al., Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis, 2002. 23(10): p. 1593-601.

    Google Scholar 

  31. Perides, G., et al., The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis. BMC Cancer, 2006. 6: p. 56.

    Google Scholar 

  32. Valiente, M., et al., Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 2014. 156(5): p. 1002-16.

    Google Scholar 

  33. Sevenich, L., et al., Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol, 2014. 16(9): p. 876-88.

    Google Scholar 

  34. Wei, L., et al., Inhibition of Cathepsin S Restores TGF-beta-induced Epithelial-to-mesenchymal Transition and Tight Junction Turnover in Glioblastoma Cells. J Cancer, 2021. 12(6): p. 1592-1603.

    Google Scholar 

  35. Yang, Y., et al., Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab, 2007. 27(4): p. 697-709.

    Google Scholar 

  36. Ricci, S., et al., Evaluation of matrix metalloproteinase type IV-collagenases in serum of patients with tumors of the central nervous system. J Neurooncol, 2017. 131(2): p. 223-232.

    Google Scholar 

  37. Feng, S., et al., Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One, 2011. 6(8): p. e20599.

    Google Scholar 

  38. Stark, A.M., et al., Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol, 2007. 81(1): p. 39-48.

    Google Scholar 

  39. Wu, K., et al., Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem, 2015. 290(15): p. 9842-54.

    Google Scholar 

  40. Conrad, C., et al., ADAM8 expression in breast cancer derived brain metastases: Functional implications on MMP-9 expression and transendothelial migration in breast cancer cells. Int J Cancer, 2018. 142(4): p. 779-791.

    Google Scholar 

  41. Liu, W., et al., AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater, 2019. 91: p. 195-208.

    Google Scholar 

  42. Curtaz, C.J., et al., Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood-brain barrier model. Fluids Barriers CNS, 2020. 17(1): p. 31.

    Google Scholar 

  43. Lee, T.H., et al., Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem, 2003. 278(7): p. 5277-84.

    Google Scholar 

  44. Fan, J., et al., Integrin beta4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-mediated secretion of VEGF. Ann Biomed Eng, 2011. 39(8): p. 2223-2241.

    Google Scholar 

  45. Dieterich, L.C., et al., Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFbeta2 in vascular abnormalization. J Pathol, 2012. 228(3): p. 378-90.

    Google Scholar 

  46. Feng, S., Y. Huang, and Z. Chen, Does VEGF secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight-junction proteins in central nervous system leukemia? Med Hypotheses, 2011. 76(5): p. 618-21.

    Google Scholar 

  47. Li, B., et al., Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene, 2013. 32(24): p. 2952-62.

    Google Scholar 

  48. Kim ES, K.M., Moon A., TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol., 2004. 2004 Nov;25(5):1375-82.

    Google Scholar 

  49. Hong, L., et al., EndMT: A promising and controversial field. Eur J Cell Biol, 2018. 97(7): p. 493-500.

    Google Scholar 

  50. Krizbai, I.A., et al., Endothelial-mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation. PLoS One, 2015. 10(3): p. e0119655.

    Google Scholar 

  51. Sikpa, D., et al., Cerebrovascular inflammation promotes the formation of brain metastases. Int J Cancer, 2020. 147(1): p. 244-255.

    Google Scholar 

  52. Varatharaj, A. and I. Galea, The blood-brain barrier in systemic inflammation. Brain Behav Immun, 2017. 60: p. 1-12.

    Google Scholar 

  53. Connell, J.J., et al., Selective permeabilization of the blood-brain barrier at sites of metastasis. J Natl Cancer Inst, 2013. 105(21): p. 1634-43.

    Google Scholar 

  54. Anchan, A., et al., Analysis of Melanoma Secretome for Factors That Directly Disrupt the Barrier Integrity of Brain Endothelial Cells. Int J Mol Sci, 2020. 21(21).

    Google Scholar 

  55. Martin, T.A., et al., Hepatocyte growth factor disrupts tight junctions in human breast cancer cells. Cell Biol Int, 2004. 28(5): p. 361-71.

    Google Scholar 

  56. Mulcahy, E.Q.X., R.R. Colomicronn, and R. Abounader, HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci, 2020. 21(20).

    Google Scholar 

  57. Rodriguez, P.L., et al., The proinflammatory peptide substance P promotes blood-brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer, 2014. 134(5): p. 1034-44.

    Google Scholar 

  58. Lewis, K.M., et al., Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood-brain barrier during extravasation and brain invasion. Clin Exp Metastasis, 2013. 30(1): p. 1-12.

    Google Scholar 

  59. Avraham, H.K., et al., Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol, 2014. 232(3): p. 369-81.

    Google Scholar 

  60. Bohn, K.A., et al., Inhibition of VEGF and Angiopoietin-2 to Reduce Brain Metastases of Breast Cancer Burden. Front Pharmacol, 2017. 8: p. 193.

    Google Scholar 

  61. Valable, S., et al., MRI assessment of hemodynamic effects of angiopoietin-2 overexpression in a brain tumor model. Neuro Oncol, 2009. 11(5): p. 488-502.

    Google Scholar 

  62. Cao, Y., et al., Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res, 2007. 67(8): p. 3835-44.

    Google Scholar 

  63. Wilhelm, I., Krizbai, IA., Functional Characteristics of Brain Tumor Vascularization, in Brain Mapping, A.W. Toga, Editor. 2015, Academic Press. p. 1075-1079.

    Google Scholar 

  64. Sereno, M., et al., miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells, 2020. 9(8).

    Google Scholar 

  65. Zhou, W., et al., Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014. 25(4): p. 501-15.

    Google Scholar 

  66. Tominaga, N., et al., Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun, 2015. 6: p. 6716.

    Google Scholar 

  67. Di Modica, M., et al., Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Lett, 2017. 384: p. 94-100.

    Google Scholar 

  68. Figueira, I., et al., MicroRNAs and Extracellular Vesicles as Distinctive Biomarkers of Precocious and Advanced Stages of Breast Cancer Brain Metastases Development. Int J Mol Sci, 2021. 22(10).

    Google Scholar 

  69. Sereno, M., et al., Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol Oncol, 2020. 14(3): p. 520-538.

    Google Scholar 

  70. Wang, H., et al., N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer, 2019. 18(1): p. 181.

    Google Scholar 

  71. Lu, Y., et al., Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5. Biomed Res Int, 2020. 2020: p. 7461727.

    Google Scholar 

  72. Ma, S.C., et al., CLDN5 affects lncRNAs acting as ceRNA dynamics contributing to regulating bloodbrain barrier permeability in tumor brain metastasis. Oncol Rep, 2018. 39(3): p. 1441-1453.

    Google Scholar 

  73. Morad, G., et al., Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano, 2019. 13(12): p. 13853-13865.

    Google Scholar 

  74. Daneman, R. and A. Prat, The blood-brain barrier. Cold Spring Harb Perspect Biol, 2015. 7(1): p. a020412.

    Google Scholar 

  75. Marchetti, D., J. Li, and R. Shen, Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res, 2000. 60(17): p. 4767-70.

    Google Scholar 

  76. Klein, A., et al., Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol, 2015. 236(1): p. 116-27.

    Google Scholar 

  77. Hajal, C., et al., The CCL2-CCR2 astrocyte-cancer cell axis in tumor extravasation at the brain. Sci Adv, 2021. 7(26).

    Google Scholar 

  78. Jin, J., et al., CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment. Front Oncol, 2021. 11: p. 722916.

    Google Scholar 

  79. Fujimoto, T., et al., Pericytes Suppress Brain Metastasis from Lung Cancer In Vitro. Cell Mol Neurobiol, 2020. 40(1): p. 113-121.

    Google Scholar 

  80. Molnar, K., et al., Pericyte-secreted IGF2 promotes breast cancer brain metastasis formation. Mol Oncol, 2020. 14(9): p. 2040-2057.

    Google Scholar 

  81. Viski, C., et al., Endosialin-Expressing Pericytes Promote Metastatic Dissemination. Cancer Res, 2016. 76(18): p. 5313-25.

    Google Scholar 

  82. Qiao, S., et al., Long-term characterization of activated microglia/macrophages facilitating the development of experimental brain metastasis through intravital microscopic imaging. J Neuroinflammation, 2019. 16(1): p. 4.

    Google Scholar 

  83. Winkler, F., et al., Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia, 2009. 57(12): p. 1306-15.

    Google Scholar 

  84. Osswald, M., et al., Brain tumour cells interconnect to a functional and resistant network. Nature, 2015. 528(7580): p. 93-8.

    Google Scholar 

  85. Watkins, S., et al., Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun, 2014. 5: p. 4196.

    Google Scholar 

  86. Sun, H., et al., Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS One, 2014. 9(12): p. e114246.

    Google Scholar 

  87. Greig, N.H., H.B. Jones, and J.B. Cavanagh, Blood-brain barrier integrity and host responses in experimental metastatic brain tumours. Clin Exp Metastasis, 1983. 1(3): p. 229-46.

    Google Scholar 

  88. Shibata, S., Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol, 1989. 78(6): p. 561-71.

    Google Scholar 

  89. Hardee, M.E. and D. Zagzag, Mechanisms of glioma-associated neovascularization. Am J Pathol, 2012. 181(4): p. 1126-41.

    Google Scholar 

  90. Madden, S.L., et al., Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol, 2004. 165(2): p. 601-8.

    Google Scholar 

  91. Shue, E.H., et al., Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models. BMC Neurosci, 2008. 9: p. 29.

    Google Scholar 

  92. Thompson, E.M., et al., Inhibition of SUR1 decreases the vascular permeability of cerebral metastases. Neoplasia, 2013. 15(5): p. 535-43.

    Google Scholar 

  93. Bertossi, M., et al., Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol, 1997. 21(1): p. 41-9.

    Google Scholar 

  94. Sarkaria, J.N., et al., Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol, 2018. 20(2): p. 184-191.

    Google Scholar 

  95. Lockman, P.R., et al., Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res, 2010. 16(23): p. 5664-78.

    Google Scholar 

  96. Osswald, M., et al., Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases. Clin Cancer Res, 2016. 22(24): p. 6078-6087.

    Google Scholar 

  97. Fidler, I.J., The role of the organ microenvironment in brain metastasis. Semin Cancer Biol, 2011. 21(2): p. 107-12.

    Google Scholar 

  98. Adkins, C.E., et al., Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clin Exp Metastasis, 2016. 33(4): p. 373-83.

    Google Scholar 

  99. Arvanitis, C.D., G.B. Ferraro, and R.K. Jain, The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer, 2020. 20(1): p. 26-41.

    Google Scholar 

  100. Phoenix, T.N., et al., Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell, 2016. 29(4): p. 508-522.

    Google Scholar 

  101. Mittapalli, R.K., et al., Quantitative Fluorescence Microscopy Measures Vascular Pore Size in Primary and Metastatic Brain Tumors. Cancer Res, 2017. 77(2): p. 238-246.

    Google Scholar 

  102. Morikawa, A., et al., Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol, 2015. 17(2): p. 289-95.

    Google Scholar 

  103. Papadopoulos, M.C., et al., Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol, 2001. 27(5): p. 384-95.

    Google Scholar 

  104. Liebner, S., et al., Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol, 2000. 100(3): p. 323-31.

    Google Scholar 

  105. Park, M.W., et al., Occludin expression in brain tumors and its relevance to peritumoral edema and survival. Cancer Res Treat, 2006. 38(3): p. 139-43.

    Google Scholar 

  106. Pernet-Gallay, K., et al., Vascular permeability in the RG2 glioma model can be mediated by macropinocytosis and be independent of the opening of the tight junction. J Cereb Blood Flow Metab, 2017. 37(4): p. 1264-1275.

    Google Scholar 

  107. Li, Y., et al., Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells. Int J Clin Exp Pathol, 2015. 8(10): p. 13067-74.

    Google Scholar 

  108. Ishihara, H., et al., Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol, 2008. 67(5): p. 435-48.

    Google Scholar 

  109. Setiadi, A.F., et al., IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol, 2019. 332: p. 147-154.

    Google Scholar 

  110. Zheng, Q., et al., IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signalling pathway. J Cell Mol Med, 2019. 23(1): p. 357-369.

    Google Scholar 

  111. Guo, J., et al., Long non-coding RNA NEAT1 regulates permeability of the blood-tumor barrier via miR-181d-5p-mediated expression changes in ZO-1, occludin, and claudin-5. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(9): p. 2240-2254.

    Google Scholar 

  112. Kakogiannos, N., et al., JAM-A Acts via C/EBP-alpha to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. Circ Res, 2020. 127(8): p. 1056-1073.

    Google Scholar 

  113. Ma, J., et al., MiR-181a regulates blood-tumor barrier permeability by targeting Kruppel-like factor 6. J Cereb Blood Flow Metab, 2014. 34(11): p. 1826-36.

    Google Scholar 

  114. Miao, Y.S., et al., MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5. Cell Signal, 2015. 27(1): p. 156-67.

    Google Scholar 

  115. Gao, Y., et al., Circular RNA USP1 regulates the permeability of blood-tumour barrier via miR-194-5p/FLI1 axis. J Cell Mol Med, 2020. 24(1): p. 342-355.

    Google Scholar 

  116. Ma, J., et al., Knockdown of long non-coding RNA MALAT1 increases the blood-tumor barrier permeability by up-regulating miR-140. Biochim Biophys Acta, 2016. 1859(2): p. 324-38.

    Google Scholar 

  117. Guo, J., et al., Role of linc00174/miR-138-5p (miR-150-5p)/FOSL2 Feedback Loop on Regulating the Blood-Tumor Barrier Permeability. Mol Ther Nucleic Acids, 2019. 18: p. 1072-1090.

    Google Scholar 

  118. Cai, H., et al., The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget, 2015. 6(23): p. 19759-79.

    Google Scholar 

  119. Gril, B., et al., Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat Commun, 2018. 9(1): p. 2705.

    Google Scholar 

  120. Wolburg, H., et al., The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med, 2012. 33(5-6): p. 579-89.

    Google Scholar 

  121. Lyle, L.T., et al., Alterations in Pericyte Subpopulations Are Associated with Elevated Blood-Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer. Clin Cancer Res, 2016. 22(21): p. 5287-5299.

    Google Scholar 

  122. Hosaka, K., et al., Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A, 2016. 113(38): p. E5618-27.

    Google Scholar 

  123. Lindblom, P., et al., Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev, 2003. 17(15): p. 1835-40.

    Google Scholar 

  124. Girolamo, F., et al., Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One, 2013. 8(12): p. e84883.

    Google Scholar 

  125. Caspani, E.M., et al., Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLoS One, 2014. 9(7): p. e101402.

    Google Scholar 

  126. Valdor, R., et al., Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget, 2017. 8(40): p. 68614-68626.

    Google Scholar 

  127. Valdor, R., et al., Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc Natl Acad Sci U S A, 2019. 116(41): p. 20655-20665.

    Google Scholar 

  128. Zhou, W., et al., Targeting Glioma Stem Cell-Derived Pericytes Disrupts the Blood-Tumor Barrier and Improves Chemotherapeutic Efficacy. Cell Stem Cell, 2017. 21(5): p. 591-603 e4.

    Google Scholar 

  129. Couto, M., et al., The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol, 2019. 234(11): p. 19750-19760.

    Google Scholar 

  130. Bowman, R.L., et al., Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Rep, 2016. 17(9): p. 2445-2459.

    Google Scholar 

  131. Andreou, K.E., et al., Anti-inflammatory Microglia/Macrophages As a Potential Therapeutic Target in Brain Metastasis. Front Oncol, 2017. 7: p. 251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imola Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilhelm, I., Molnár, K., Krizbai, I.A. (2022). Role of Cerebral Endothelial Tight Junctions in the Formation of Brain Tumors. In: González-Mariscal, L. (eds) Tight Junctions. Springer, Cham. https://doi.org/10.1007/978-3-030-97204-2_12

Download citation

Publish with us

Policies and ethics