Skip to main content
Log in

Epidermal growth factor and insulin-like growth factor-1 protect MDA-231 cells from death induced by actinomycin D: The involvement of growth factors in drug resistance

  • Growth, Differentiation, And Senesence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In the present study, we investigated the ability of epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin to protect the human breast cancer cell line MDA-231 from death induced by the antitumor drug actinomycin D (ACT-D). ACT-D is an inhibitor of RNA and protein synthesis, and its cytotoxicity may result due to continuous depletion in some vital protein molecules. Cell death was induced in the MDA-231 cells by either continuous exposure to a low dose of ACT-D (0.2µg/ml), or by a short-time exposure to a high dose of ACT-D (2µg/ml) and further culturing in the absence of the drug. Cell death was evaluated by the trypan blue dye exclusion test, the release of lactic dehydrogenase into the culture medium, and the depletion in the cellular ATP content. EGF and IGF-1, each at an optimal concentration of 20 ng/ml, enhanced substantially survival of cells exposed either to a low or a high dose of ACT-D. The combination of EGF (10 ng/ml) and IGF-1 (10 ng/ml) had an additive survival effect, which proposes that each of the growth factors enhanced survival by a distinct pathway. Insulin up to 40 ng/ml had no effect on cell survival. Pretreatment of the cells for 1 to 5 h with EGF and IGF-1 protected cells from the cytotoxic effect of ACT-D. Exposure of the cells to 2µg/ml of ACT-D for 1 h resulted in a drastic inhibition in uridine incorporation and only in a slight inhibition in leucine incorporation. Further incubation in the absence of ACT-D resulted in a continuous decrease in uridine and in leucine incorporation, either in the absence or presence of the growth factors. However, EGF and IGF-1, but not insulin, attenuated significantly this continuous decrease. We assume that EGF and IGF-1 protect cell viability by a mechanism that maintains a critical level of some vital protein molecule above the critical level at which cells die. Our finding that EGF and IGF-1 induced resistance to ACT-D suggests that growth factors may be involved in the mechanism of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Condorelli, G.; Formisano, P.; Villone, G., et al. Insulin and insulin-like growth factor-1 (IGF-1) stimulate phosphorylation of a Mr 175,000 cytoskeleton associated protein in intact FRTLS cells. J. Biol. Chem. 264:12633–12638; 1989.

    PubMed  CAS  Google Scholar 

  2. Curt, G. A.; Clendeninn, N. J.; Chabner, B. A. Drug resistance in cancer. Cancer Treat. Rep. 68:87–99; 1984.

    PubMed  CAS  Google Scholar 

  3. Czech, M. P. Signal transmission by the insulin-like growth factors. Cell 59:235–238; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Frei, E. III. The clinical use of actinomycin D. Cancer Chemother. Rep. 58:49–54; 1974.

    PubMed  Google Scholar 

  5. Furlanetto, R. W.; DiCarlo, J. N. Somatomedin-C receptors and growth effects in human breast cells maintained in long-term tissue culture. Cancer Res. 44:2122–2128; 1984.

    PubMed  CAS  Google Scholar 

  6. Geier, A.; Haimsohn, M.; Beery, R., et al. Insulin-like growth factor-1 inhibits cell death induced by cycloheximide in MCF-7 cells: a model system for analyzing control of cell death. In Vitro Cell. Dev. Biol. 28A:725–729; 1992.

    PubMed  CAS  Google Scholar 

  7. Geier, A.; Hemi, R.; Haimsohn, M., et al. Epidermal growth factor and insulin-like growth factor-1 preserve cell viability in the absence of protein synthesis. In Vitro Cell. Dev. Biol. 29A:231–234; 1993.

    PubMed  CAS  Google Scholar 

  8. Geier, A.; Beery, R.; Haimsohn, M., et al. Serum and insulin inhibit cell death induced by cycloheximide in the human breast cancer cell line MCF-7. In Vitro Cell. Dev. Biol. 28A:415–418; 1992.

    PubMed  CAS  Google Scholar 

  9. Gerschenson, L. E.; Rotello, R. J. Apoptosis: a different type of cell death. FASEB J. 6:2450–2455; 1992.

    PubMed  CAS  Google Scholar 

  10. Goldfine, I. D. The insulin receptor: molecular biology and transmembrane signaling. Endocrinol. Rev. 8:235–255; 1987.

    Article  CAS  Google Scholar 

  11. Green, D. M.; Finkelstein, J. Z.; Norkool, P., et al. Severe hepatic toxicity after treatment with single-dose dactinomycin and vincristine. Cancer (Phila) 62:270–273; 1988.

    Article  CAS  Google Scholar 

  12. Hochhauser, D.; Harris, A. L. Drug resistance. Br. Med. Bull. 47:178–196; 1991.

    PubMed  CAS  Google Scholar 

  13. Karnovsky, M. A. Formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell. Biol. 27:137–138; 1965.

    Google Scholar 

  14. Laster, S. M.; Wood, J. G.; Gooding, L. R. Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis. J. Immunol. 141:2629–2634; 1988.

    PubMed  CAS  Google Scholar 

  15. Martin, D. P.; Schmidt, R. E.; Distefano, P. S., et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factors deprivation. J. Cell. Biol. 106:829–844; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Martin, S. J.; Lennon, S. V.; Bonham, A. M., et al. Introduction of apoptosis (programmed all death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol. 145:1859–1867; 1990.

    PubMed  CAS  Google Scholar 

  17. Moscow, J. A.; Cown, K. H. Multidrug resistance. JNCI 80:14–20; 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Nieto, M. A.; Gonzales, A.; Lopez-Rivas, A., et al. IL-2 protects against anti-CD3-induced cell death in human medullary thymocytes. J. Immunol. 145:1364–1368; 1990.

    PubMed  CAS  Google Scholar 

  19. Osborne, C. K.; Hamilton, B.; Titus, G., et al. Epidermal growth factor stimulation of human breast cancer cells in culture. Cancer Res. 40:2361–2366; 1980.

    PubMed  CAS  Google Scholar 

  20. Perry, R. P.; Kelly, D. E. Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J. Cell. Physiol. 76:127–140; 1970.

    Article  PubMed  CAS  Google Scholar 

  21. Perry, R. P.; Kelly, D. E. Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J. Cell. Physiol. 72:235–246; 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Pusztai, L.; Lewis, D. E.; Lorenzen, J., et al. Growth factors: regulation of normal and neoplastic growth. J. Pathol. 169:191–201; 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Rozengurt, E. Early signals in the mitogenic response. Science 234:161–166; 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Scher, C. D.; Young, S. A.; Locatelli, K. L. Control of cytolysis of Balb/c-3T3 cells by platelet-derived growth factors: a model system for analyzing cell death. J. Cell. Physiol. 113:211–218; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Searle, J.; Lawson, T. A.; Abbott, P. J., et al. An electron microscope study of the mode of cell death by cancer chemotherapeutic agents in populations of proliferating normal and neoplastic cells. J. Pathol. 116:129–138; 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Sellins, K. S.; Cohen, J. J. Gene induction by irradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139:3199–3206; 1987.

    PubMed  CAS  Google Scholar 

  27. Tamm, I.; Kikuchi, T. Insulin-like growth factor-1 (IGF-1), insulin and epidermal growth factor (EGF) are survival factors for density-inhibited, quiescent Balb/c-3T3 murine fibroblasts. J. Cell. Physiol. 143:494–500; 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Tamm, I.; Kikuchi, T. Activation of signal transduction pathways protects quiescent Balb/c-3T3 fibroblasts against death due to serum deprivation. J. Cell. Physiol. 148:85–95; 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Tamm, I.; Kikuchi, T.; Zychlinsky, A. Acid and basic fibroblast growth factors are survival factors with distinctive activity in quiescent Balb/c-3T3 murine fibroblasts. Proc. Natl. Acad. Sci. USA 88:3372–3376; 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Williams, G. T.; Smith, C. A.; Spooncer, E., et al. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76–79; 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Wyllie, A. H.; Kerr, J. F. R.; Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–306; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Wyllie, A. H.; Morris, R. G.; Smith, A. L., et al. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142:67–77; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geier, A., Hemi, R., Haimsohn, M. et al. Epidermal growth factor and insulin-like growth factor-1 protect MDA-231 cells from death induced by actinomycin D: The involvement of growth factors in drug resistance. In Vitro Cell Dev Biol - Animal 30, 336–343 (1994). https://doi.org/10.1007/BF02631455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631455

Key words

Navigation