Skip to main content

Drought Stress Tolerance: An Insight to Resistance Mechanism and Adaptation in Plants

  • Chapter
  • First Online:
Microbes and Signaling Biomolecules Against Plant Stress

Abstract

Water is essentially required by all the living systems including plants to maintain normal function of growth and metabolism. Drought stress in plants may affect several activities like cell elongation, morphology, nutrient availability due to the production of ROS and photo oxidation. Present study discusses various aspects of drought stress in plants and possible solutions to improve the tolerance. Application of plant growth promoting bacteria to ameliorate drought stress is undeniable in addition to several other ways to fight drought stress. Endophytic fungi are also reported to improve the stress management in plants as they colonize the plant roots and impart several benefits by providing essential metabolites related to resistance and development. Genetic engineering has always been a solution to stress management through the insertion or deletion of required genes. However, nanotechnology also offers ways to tolerate drought in plants as it improves the water use efficiency for plants and associated microbes. Future basic research at molecular level is still needed to explore the exact mechanisms lying beneath the stress tolerance strategies in plants. This may help in developing proper understanding between drought and plant metabolites and its application in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    Article  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6e24

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylatedeaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential–are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. MPMI 21(8):1067–1075

    Article  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dimkpa C, Bindraban PS, Fugice J, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37(1). https://doi.org/10.1007/s13593-016-0412-8

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Miransari M (ed) Biotechnological techniques of stress tolerance in plants. Stadium Press LLC, Houston, TX, pp 21–39

    Google Scholar 

  • Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J (2017) Drought effect on plant biomass allocation: a meta- analysis. Ecol Evol 7:11002–11010

    Article  Google Scholar 

  • Garcíaa JE, Maronicheb G, Creus C, Suárez-Rodríguezd R, Ramirez-Trujillod JA, Gropp MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  CAS  Google Scholar 

  • Ghabooli M, Khatabi B, Shahriary F, Ahmadi Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteome 94:289–301

    Article  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151e157

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Venkateswarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gupta (2006) Hill agriculture: status of research and production potential. In: Gupta HS, Srivastava AK, Bhatt JC (eds) Sustainable production from agricultural watershed in North West Himalaya. Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 615p

    Google Scholar 

  • Hasegawa S, Meguro A, Toyoda K, Nishimura T, Kunoh H (2007) Drought tolerance of tissue-cultured seedlings of mountain Laurel (Kalmia latifolia L.) induced by an endophytic actinomycete: II. Acceleration of callose accumulation and lignification. Actinomycetologica 19:13–17

    Article  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2008) Drought tolerance of tissue-cultured seedlings of Mountain Laurel (Kalmia latifolia L.) induced by an endophytic actinomycete: I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Xianghua L, Zhang Q, Xiong L (2006) Over expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  Google Scholar 

  • Jabeen B, Naqvi SMS, Mahmood T, Sultana T, Arif M, Khan F (2017) Ectopic expression of plant RNA chaperone offering multiple stress tolerance in E. coli. Mol Biotechnol 59:66–72

    Article  CAS  Google Scholar 

  • Jaleel AC, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B: Biointerfaces 60:7–11

    Article  CAS  Google Scholar 

  • Jiang SY, Ramamoorthy R, Bhalla R, Luan HF, Nori P, Venkatesh Cai M, Ramachandran S (2008) Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses. Plant Mol Biol 67:603–614

    Article  CAS  Google Scholar 

  • Kant S, Kafkafi U (2002) Potassium and abiotic stresses in plants. In: Pasricha NS, Bansal SK (eds) Potassium for sustainable crop production. Potash Institute of India, Gurgaon, pp 233–251

    Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Khan F, Sultana T, Deeba F, Saqlan Naqvi SM (2013) Dynamics of mRNA of glycine-rich RNA-binding protein during wounding, cold and salt stresses in Nicotiana tabacum. Pak J Bot 45:297–300

    CAS  Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. Biotech 7:81

    Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Sharma A (2019) Influence of nanozeolite on plant growth promotory bacterial isolates recovered from nanocompound infested agriculture field. Environ Ecol 37(2):521–527

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldán A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kumar A, Minocha SC (1998) Transgenic manipulation of polyamine metabolism. In: Lindsey K (ed) Transgenic plant research. Harwood Academic, London, pp 187–199

    Google Scholar 

  • Liu H, Wang Y, Zhou X, Wang C, Wang C, Fu J, Wei T (2016) Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants. Plant Cell Rep 35:1333–1344

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. In: Marschner P (ed) . Elsevier/Academic Press, Amsterdam, p 684

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Monayeri MO, Higazi AN, Ezzat NH, Saleem HM, Tohoun SN (1984) Growth and yield of some wheat and barley varieties grown under different moisture levels. Ann Agric Sci Mushtohor 20:231–243

    Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62(2):316–329

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of “Micro Tomato plants”. J Appl Microbiol 117(3):766–773

    Article  CAS  Google Scholar 

  • Pampurov S, Dijck PV (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290

    Article  CAS  Google Scholar 

  • Pietragalla J, Alistair P (2012) Canopy temperature, stomatal conductance and water relation traits-chapter 2: stomatal conductance. In: Pask A, Pietragalla J, Mullan D, Reynolds M (eds) Physiological breeding II: a field guide to wheat phenotyping. CIIMMYT, Mexico

    Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weibeck PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Rahdari P, Hoseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. J Med Plants Res 6:1539–1547

    CAS  Google Scholar 

  • Rakhra G, Kaur T, Vyas D, Sharma AD, Singh J, Ram G (2017) Molecular cloning, characterization, heterologous expression and in silico analysis of disordered boiling soluble stress-responsive wBsSRP protein from drought tolerant wheat cv.PBW 175. Plant Physiol Biochem 112:29e44

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3. Biotech 7:102

    Google Scholar 

  • Sen S, Ghosh D, Mohapatra S (2018) Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol Biochem 129:180–188

    Article  CAS  Google Scholar 

  • Sharma NK, Singh RJ, Mandal D, Kumar A, Alam NM (2017) Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize – wheat rotation in Himalaya, India. Agric Ecosyst Environ 247:43–53

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Shou HX, Bordallo P, Wang K (2004) Expression of Nicotiana protein kinase (NPK1) enhances drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. MPMI 21(7):958–966

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings Publishing Company, Redwood City, CA

    Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microb Interact 12:951

    Article  CAS  Google Scholar 

  • Timmusk S, Islam A, El-Daim SA, Lucian C, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  • Todaka D, Shinozaki K, Shinozaki KY (2015) Recent advances in the dissection of drought stress regulatory network and strategies for development of drought tolerant transgenic rice plants. Front Plant Sci 6(84):00084

    Google Scholar 

  • Van Rensburg L, Kruger GHJ (1994) Applicability of abscisic acid and (or) proline accumulation as selection criteria for drought tolerance in Nicotiana tabacum. Can J Bot 72:1535–1540

    Article  CAS  Google Scholar 

  • Wang Z, Solanki MK, Yu ZX, Yang LT, An QL, Dong DF, Li YR (2019) Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front Microbiol 9:3262

    Article  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  Google Scholar 

  • Westwood JH, Mccann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AAR, Carr JP (2013) A viral RNA silencing suppressor interferes with abscisicacid-mediated signaling and induces drought tolerance in Arabidopsis thaliana. Mol Plant Pathol 14(2):158–170

    Article  CAS  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290

    Article  CAS  Google Scholar 

  • Wu Y, Liu C, Kuang J, Ge Q, Zhang Y, Wang Z (2014) Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma 251:1191–1199

    Article  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6:369e385

    Article  CAS  Google Scholar 

  • Yuan XK, Yang ZQ, Li YX, Liu Q, Han W (2016) Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 54:28–39

    Article  CAS  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  CAS  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Tang HL (2005) Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. J. Intensive Plant Biol 47:579–587

    Article  CAS  Google Scholar 

  • Zhang L, Li M, Li Q, Chen C, Qu M, Li M, Wang Y, Shen X (2018a) The catabolite repressor/activator Cra is a bridge connecting carbon metabolism and host colonization in the plant drought resistance-promoting bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 84:e00054–e00018

    Article  CAS  Google Scholar 

  • Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, Qiu L, Oelmfuller R (2018b) Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav 13(1):e1414121

    Article  CAS  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Australian J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Director, ICAR-VPKAS, Almora-263601, Uttarakhand, India for providing the opportunity and guidance for writing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khati, P., Mishra, P.K., Parihar, M., Singh, A.K., Bisht, J.K., Pattanayak, A. (2021). Drought Stress Tolerance: An Insight to Resistance Mechanism and Adaptation in Plants. In: Sharma, A. (eds) Microbes and Signaling Biomolecules Against Plant Stress. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7094-0_10

Download citation

Publish with us

Policies and ethics