Skip to main content
Log in

Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Salinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge. Phylogenetic analysis indicated that SmLEA belongs to Group LEA14, which is involved in the dehydration response. To determine its function in detail, we have now overexpressed SmLEA in Escherichia coli and S. miltiorrhiza. The logarithmic increase in accumulations of SmLEA proteins in E. coli occurred earlier under salinity than under standard conditions. SmLEA-transformed S. miltiorrhiza plants also showed faster root elongation and a lower malondialdehyde concentration than the empty vector control plants did when cultured on MS media supplemented with 60 mM NaCl or 150 mM mannitol. Moreover, SmLEA-overexpressing transgenics experienced a less rapid rate of water loss. Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration. These results suggest that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza. Our data also provide a good foundation for further studies into the stress resistance mechanism and molecular breeding of this valuable medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans Roy Soc Lond B 355:1419–1431. doi:10.1098/rstb.2000.0703

    Article  CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho T, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley, confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862. doi:10.1016/j.plantsci.2003.11.023

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R. (eds.), Biochemistry and molecular biology of plants. American Society of Plant Physiologists, pp. 1158–1176

  • Ceccardi TL, Meyer NC, Close TJ (1994) Purification of a maize dehydrin. Protein Express Purif 5:266–269. doi:10.1006/prep.1994.1040

    Article  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108. doi:10.1007/BF00027338

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139(2):137–145. doi:10.1016/j.jbiotec.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168. doi:10.1021/bi00517a033

    Article  CAS  PubMed  Google Scholar 

  • Galau GA, Wang HYC, Hughes DW (1993) Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiol 101:695–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han LM, Yu JN, Ju WF (2007) Salt and drought tolerance of transgenic Salvia miltiorrhiza Bunge with the TaLEA1 gene. J Plant Physiol Mol Biol 33(2):109–114

    Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineumin transgenic tobacco. Plant Mol Biol 20:555–558. doi:10.1007/BF00040614

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123. doi:10.1016/j.gene.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi:10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Wang ZZ (2009) Cloning and expression analysis of SmLEA from Salvia miltiorrhiza Bunge. Biotechnol Bull 5:80–84

    Google Scholar 

  • Liu CL, Wang ZZ (2010) Gene expression analysis of a late embryogenesis abundant gene from Salvia miltiorrhiza Bunge. China Biotechnol 30(1):51–55

    Google Scholar 

  • Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Comm 331(1):325–332. doi:10.1016/j.bbrc.2005.03.165

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Bao YM, Jiang B, Wang Z, Liu YX, Zhang C, An LJ (2008) Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage. Int J Dev Neurosci 26:309–317. doi:10.1016/j.ijdevneu.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  • Maitra N, Cushman JC (1994) Isolation and characterization of a drought induced soybean cDNA encoding a D95 family late-embryogenesis abundant protein. Plant Physiol 106(2):805–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed MA, Harris PJ, Henderson J (2000) In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci 159:213–222. doi:10.1016/S0168-9452(00)00339-3

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    Article  CAS  PubMed  Google Scholar 

  • Noctor GH, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    CAS  PubMed  Google Scholar 

  • Park JA, Cho SK, Kim JE et al (2003) Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang). Plant Sci 165(3):471–481. doi:10.1016/S0168-9452(03)00165-1

    Article  CAS  Google Scholar 

  • Park SC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt-stress tolerance of transgenic calli. Planta 233:621–634. doi:10.1007/s00425-010-1326-3

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9. doi:10.1016/S0168-9452(99)00247-2

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Ghnaya T, Hessini K, Messedi D, Savoure A, Abdelly C (2007) Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10–17. doi:10.1016/j.envexpbot.2007.02.004

    Article  CAS  Google Scholar 

  • Soulages JL, Kim KM, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832. doi:10.1104/pp. 010521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor NL, Tan YF, Jacoby RP, Millar AH (2009) Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteom 72(3):367–378. doi:10.1016/j.jprot.2008.11.006

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 9:791–812. doi:10.1007/s00114-007-0254-y

    Article  Google Scholar 

  • Vandesompele J, de Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang DH, Yao W, Yin S, Liu WC, Wang ZZ (2012) Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J Plant Physiol 169:1838–1848. doi:10.1016/j.jplph.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230. doi:10.1016/j.jplph.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform 4:52–70. doi:10.1186/1471-2105-4-52

    Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Y, Wang Z (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Org Cult 88:175–184. doi:10.1007/s11240-006-9187-y

    Article  CAS  Google Scholar 

  • Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA protein. J Biochem 127:611–616

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Jones B, Marty C et al (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35(6):847–854. doi:10.1023/A:1005860302313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work benefited from financial support from the Natural Science Foundation of Shaanxi Province, China (2012JQ4013) and the National Natural Science Foundation of China (Grant No. 31300256).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhezhi Wang.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Liu, C., Kuang, J. et al. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza . Protoplasma 251, 1191–1199 (2014). https://doi.org/10.1007/s00709-014-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0626-z

Keywords

Navigation