Skip to main content

Advertisement

Log in

Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Members of the plant glycine-rich RNA-binding proteins (GR-RBPs) family have been reported in flowering, development, circadian rhythms, biotic and abiotic stresses. Particularly, GR-RBPs are reported to function as RNA chaperones, promoting growth and acclimation during cold shock. It is indispensable to further question the efficacy and mechanism of GR-RBPs under various environmental strains. Monitoring the expression of stress-regulated proteins under stress conditions has been a beneficial strategy to study their functional roles. In an effort to elucidate the NtGR-RBP1 function, stress markers such as salinity, drought, low temperature and heat stresses were studied. The NtGR-RBP1 gene was expressed in E. coli followed by the exposure to stress conditions. Recombinant E. coli expressing NtGR-RBP1 were more tolerant to stresses, e.g., salinity, drought, cold and heat shock. Recombinants exhibited higher growth rates compared to control in spot assays. The tolerance was further confirmed by monitoring the growth in liquid culture assays. Cells expressing NtGR-RBP1 under salt (500 mM NaCl), drought (20% PEG), cold (4 and 20 °C) and heat stresses (50 °C) had enhanced growing ability and better endurance. Our study supports the notion that the protective role of NtGR-RBP1 may contribute to growth and survival during diverse environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fedoroff, N. V. (2002). RNA-binding proteins in plants: The tip of an iceberg? Current Opinion in Plant Biology, 5, 452–459.

    Article  CAS  Google Scholar 

  2. Sachetto-Martins, G., Franco, L. O., & De Oliveira, D. E. (2000). Plant glycine-rich proteins: A family or just proteins with a common motif? Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1492, 1–14.

    Article  CAS  Google Scholar 

  3. Khan, F., Sultana, T., Deeba, F., & Saqlan Naqvi, S. M. (2013). Dynamics of mRNA of glycine-rich RNA-binding protein during wounding, cold and salt stresses in Nicotiana tabacum. Pakistan Journal of Botany, 45, 297–300.

    CAS  Google Scholar 

  4. Lee, M. O., Kim, K. P., Kim, B. G., Hahn, J. S., & Hong, C. B. (2009). Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Molecules and Cells, 27, 47–54.

    Article  CAS  Google Scholar 

  5. Lorković, Z. J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends in Plant Science, 14, 229–236.

    Article  Google Scholar 

  6. Naqvi, S. M., Park, K. S., Yi, S. Y., Lee, H. W., Bok, S. H., & Choi, D. (1998). A glycine-rich RNA-binding protein gene is differentially expressed during acute hypersensitive response following Tobacco Mosaic Virus infection in tobacco. Plant Molecular Biology, 37, 571–576.

    Article  CAS  Google Scholar 

  7. Kim, J. Y., Park, S. J., Jang, B., Jung, C.-H., Ahn, S. J., Goh, C.-H., et al. (2007). Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal, 50, 439–451.

    Article  CAS  Google Scholar 

  8. Kim, J. S., Jung, H. J., Lee, H. J., Kim, K. A., Goh, C. H., Woo, Y., et al. (2008). Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal, 55, 455–466.

    Article  CAS  Google Scholar 

  9. Kim, J. S., Park, S. J., Kwak, K. J., Kim, Y. O., Kim, J. Y., Song, J., et al. (2007). Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research, 35, 506–516.

    Article  CAS  Google Scholar 

  10. Schöning, J. C., Streitner, C., Meyer, I. M., Gao, Y., & Staiger, D. (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research, 36, 6977–6987.

    Article  Google Scholar 

  11. Fu, Z. Q., Guo, M., Jeong, B., Tian, F., Elthon, T. E., Cerny, R. L., et al. (2007). A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 447, 284–288.

    Article  CAS  Google Scholar 

  12. Streitner, C., Köster, T., Simpson, C. G., Shaw, P., Danisman, S., Brown, J. W. S., et al. (2012). An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Research, 40, 11240–11255.

    Article  CAS  Google Scholar 

  13. Wang, C., Zhang, D. W., Wang, Y. C., Zheng, L., & Yang, C. P. (2012). A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Molecular Biology Reports, 39, 1047–1053.

    Article  CAS  Google Scholar 

  14. Sahi, C., Agarwal, M., Singh, A., & Grover, A. (2007). Molecular characterization of a novel isoform of rice (Oryza sativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stress response. Plant Science, 173, 144–155.

    Article  CAS  Google Scholar 

  15. Khan, F., Daniëls, M. A., Folkers, G. E., Boelens, R., Saqlan Naqvi, S. M., & Van Ingen, H. (2014). Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: Implications for its RNA chaperone function. Nucleic Acids Research, 42, 8705–8718.

    Article  CAS  Google Scholar 

  16. Gupta, K., Agarwal, P. K., Reddy, M. K., & Jha, B. (2010). SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Reports, 29, 1131–1137.

    Article  CAS  Google Scholar 

  17. Chaurasia, N., Mishra, Y., & Rai, L. C. (2008). Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 376, 225–230.

    Article  CAS  Google Scholar 

  18. Guo, X. H., Jiang, J., Wang, B. C., Li, H. Y., Wang, Y. C., Yang, C. P., et al. (2010). ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli. Molecular Biology Reports, 37, 1183–1190.

    Article  CAS  Google Scholar 

  19. Liu, Yun, & Zheng, Y. (2005). PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 331, 325–332.

    Article  CAS  Google Scholar 

  20. Yadav, N. S., Rashmi, D., Singh, D., Agarwal, P. K., & Jha, B. (2012). A novel salt-inducible gene SbSI-1 from Salicornia brachiata confers salt and desiccation tolerance in E. coli. Molecular Biology Reports, 39, 1943–1948.

    Article  CAS  Google Scholar 

  21. Zhao, X., Li, G., & Liang, S. (2013). Several affinity tags commonly used in chromatographic purification. Journal of Analytical Methods in Chemistry, 2013. doi:10.1155/2013/581093.

  22. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., & DeLucas, L. J. (2007). His-tag impact on structure. Acta Crystallographica Section D, Biological Crystallography, 63, 295–301.

    Article  CAS  Google Scholar 

  23. Malik, A. (2016). Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli. 3 Biotech, 6, 44.

    Article  Google Scholar 

  24. Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8 system. Frontiers in Microbiology, 5, 1–20.

    CAS  Google Scholar 

  25. Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17, 353–358.

    Article  CAS  Google Scholar 

  26. Waugh, D. S. (2005). Making the most of affinity tags. Trends in Biotechnology, 23, 316–320.

    Article  CAS  Google Scholar 

  27. Chen, X., Zeng, Q. C., Lu, X. P., Yu, D. Q., & Li, W. Z. (2010). Characterization and expression analysis of four glycine-rich RNA-binding proteins involved in osmotic response in tobacco (Nicotiana tabacum cv. Xanthi). Agricultural Sciences in China, 9, 1577–1587.

    Article  CAS  Google Scholar 

  28. Streitner, C., Danisman, S., Wehrle, F., Schöning, J. C., Alfano, J. R., & Staiger, D. (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal, 56, 239–250.

    Article  CAS  Google Scholar 

  29. Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M., et al. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 147, 446–455.

    Article  CAS  Google Scholar 

  30. Kim, J. Y., Kim, W. Y., Kwak, K. J., Oh, S. H., Han, Y. S., & Kang, H. (2010). Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Journal of Experimental Botany, 61, 2317–2325.

    Article  CAS  Google Scholar 

  31. Kwak, K. J., Park, S. J., Han, J. H., Kim, M. K., Oh, S. H., Han, Y. S., et al. (2011). Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. Journal of Experimental Botany, 62, 4003–4011.

    Article  CAS  Google Scholar 

  32. Kim, J. Y., Kim, W. Y., Kwak, K. J., Oh, S. H., Han, Y. S., & Kang, H. (2010). Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant, Cell and Environment, 33, 759–768.

    Article  CAS  Google Scholar 

  33. Kim, M. K., Jung, H. J., Kim, D. H., & Kang, H. (2012). Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions. Physiologia Plantarum, 146, 297–307.

    Article  CAS  Google Scholar 

  34. Tripet, B. P., Mason, K. E., Eilers, B. J., Burns, J., Powell, P., & Fischer, A. M. (2014). Structural and biochemical analysis of the Hordeum vulgare L Hv GR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry, 53(50), 7945–7960. doi:10.1021/bi5007223.

    Article  CAS  Google Scholar 

  35. Yang, D. H., Kwak, K. J., Kim, M. K., Park, S. J., Yang, K. Y., & Kang, H. (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Science, 214, 106–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Hugo van Ingen for careful reading and worthy suggestions in improving our manuscript. We are highly obliged to Higher Education Commission of Pakistan for providing funds to the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariha Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, B., Naqvi, S.M., Mahmood, T. et al. Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli . Mol Biotechnol 59, 66–72 (2017). https://doi.org/10.1007/s12033-017-9992-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-017-9992-z

Keywords

Navigation