Skip to main content

Toxicity of Hexavalent Chromium and Its Microbial Detoxification Through Bioremediation

  • Chapter
  • First Online:
Removal of Emerging Contaminants Through Microbial Processes

Abstract

Chromium exists in different oxidation states ranging from −IV to +VI, in relation to human exposure. Chromium contaminated ecosystems through ore refining, chemical and refractory processing, cement plants, automobile brake lining and catalytic converters for automobiles, leather tanneries and chrome pigments. It’s having carcinogenic and mutagenic effects upon both acute and chronic exposures because of its high water solubility, etc. Hexavalent chromium (Cr6+) is known to have 100-fold more toxicity than its other forms. Chromium reduction has been evaluated in both aerobic and anaerobic conditions by a group of microorganisms. Bioremediation is a viable, environment-friendly technology for cleaning up the chromium-contaminated sites. Bacterial strains such as Klebsiella pneumoniae, Bacillus firmus, Pseudomonas maltophilia and Mycobacterium sp. are capable of absorbing Cr6+ efficiently into their biomass. The fungal strains, Aspergillus flavus, Aspergillus sp. and A. niger, are also capable of transforming Cr6+ to Cr3+ relative to cell-wall-binding properties by their soluble enzymes and membrane-associated reductases of electron transfer systems. Infrared spectral analysis showed that bacterial isolates having the binding groups –OH, –NH2 and C=O conjugated with –NH were responsible for Cr6+ adsorption within the cell. Cr6+ serves as electron acceptor involving cytochromes b and c. Genetic and protein engineering may further enhance the Cr6+ reductase efficiency. The direct application of Cr6+ reductases may be a promising approach both in situ and ex situ bioremediation in a wide range of environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abruscia C, Marquinaa D, Del Amob A, Catalina F (2007) Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int Biodeter Biodegr 60:137–114

    Article  Google Scholar 

  • Achal V, Kumari D, Pan X (2011) Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium. Res J Microbiol 6:166–172

    Article  CAS  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  PubMed  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adarsh VK, Mishra M, Chowdhury S, Sudarshan M (2007) Studies on metal microbe interaction of three bacterial isolates from East Calcutta Wetland. OnLine J Biol Sci 7(2):80–88

    Article  CAS  Google Scholar 

  • Adetutu EM, Gundry TD, Patil SS, Golneshin A, Adigun J, Bhaskarla V, Aleer S, Shahsavari E, Ross E, Ball AS (2015) Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. J Hazard Mater 300:48–57

    Article  CAS  PubMed  Google Scholar 

  • Agency for Toxic Substance and Disease Registry (2012) Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta, Georgia. CAS#: 7440-47-3 Available at: www.atsdr.cdc.gov/toxprofiles/tp.asp?id=62&tid=17

  • Akhtar N, Iqbal M, Iqbal ZS, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III). J Environ Sci 20:231–239

    Article  CAS  Google Scholar 

  • Amanda NM, Lynne EM (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr (VI). Biotechnol Lett 23(9):683–687

    Article  Google Scholar 

  • Bahafid W, Sayel H, Tahri-Joutey N, EL Ghachtouli N (2011) Removal mechanism of hexavalent chromium by a novel strain of Pichia anomala isolated from industrial effluents of Fez (Morocco). J Environ Sci Eng 5:980–991

    CAS  Google Scholar 

  • Bahafid W, Tahri-Joutey N, Sayel H, Iraqui-Houssaini M, El Ghachtouli N (2012) Chromium adsorption by three yeast strains isolated from sediments in Morocco. Geomicrobiol J 30(5):422–429

    Article  Google Scholar 

  • Balamurugan D, Udayasooriyan C, Kamaladevi B (2014) Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. Int J Environ Sci 5:522–534

    CAS  Google Scholar 

  • Barceloux DG, Barceloux D (1999) Chromium. Clin Toxicol 37:173–194

    CAS  Google Scholar 

  • Batool R, Yrjala K, Hasnain S (2014) Impact of environmental stress on biochemical parameters of bacteria reducing chromium. Braz J Microbiol 45(2):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beiyuan J, Awad YM, Beckers F, Tsang DC, Ok YS, Rinklebe J (2017) Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178:110–118

    Article  CAS  PubMed  Google Scholar 

  • Biradar NV, Sindagi AS, Reddy J, Ingalhalli SS (2012) Bioremediation of chromium in pulp and paper processing industrial effluents by indigenous microbes. J Bioremed Biodegrad 3(12):1–7

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals diferences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6:827–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Catania V, Santisi S, Signa G, Vizzini S, Mazzola A, Cappello S, Yakimov MM, Quatrini P (2015) Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar Pollut Bull 99(1-2):138–149

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-García J, Devars S (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Chal JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 88(20):8915–8919

    Article  Google Scholar 

  • Chang HK, Soo JO, Yu JS, Sang HH, In HN, Jae SS (2015) Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol Eng 74:402–407

    Article  Google Scholar 

  • Cheung KH, Ji-Dong G (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59(1):8–15

    Article  CAS  Google Scholar 

  • Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–24

    Article  Google Scholar 

  • Chrysochoou M, Johnston CP (2012) Reduction of chromium(VI) in saturated zone sediments by calcium polysulfide and nano scale zero valent iron derived from green tea extract. In: Hryciw RD, Athanasopoulos-Zekkos A, Yesiller N (eds) Geo congress 2012: state of the art and practice in geotechnical engineering 2012, p 3959

    Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. InTech, Shanghai

    Google Scholar 

  • Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M (2013) Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food Chem Toxicol 53:33–47

    Article  CAS  PubMed  Google Scholar 

  • Costa HM, Rodrigues RC, Mattos MG, Ribeiro RF (2003) Evaluation of the adaptation interface of one piece implant supported superstructures obtains in Ni-Cr-Ti and Pd-Ag alloys. Braz Dent J 14:197–202

    Article  PubMed  Google Scholar 

  • Cotton FA, Wilkinson G (1980) Chromium. In: Advanced inorganic chemistry, a comprehensive text, 4th edn. John Wiley, New York, pp 719–736

    Google Scholar 

  • Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405

    Article  CAS  PubMed  Google Scholar 

  • Determination of Cr(VI) in water, wastewater, and solid waste extracts (n.d.). www.thermofisher.com/chromatography

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  PubMed  Google Scholar 

  • Dinker MK, Kulkarni PS (2015) Recent advances in silica-based materials for the removal of hexavalent chromium: a review. J Chem Eng Data 60(9):2521–2540

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah, Malaviya D (2005) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172

    Article  CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199

    Google Scholar 

  • Eaton A, Bartrand T, Rosen S (2018) Detailed analysis of the UCMR 3 database: implications for future groundwater monitoring. J Am Water Works Assoc 110(4):13–25

    Article  Google Scholar 

  • European Food Safety Authority (2014) Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 12(3):3595

    Google Scholar 

  • Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem 6:119–130

    Article  CAS  Google Scholar 

  • Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13(11):1047–1063

    Article  PubMed Central  Google Scholar 

  • Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67(1–2):55–71

    Article  CAS  Google Scholar 

  • Francesc X, Prenafeta B, Andrea K, Dion MAML, Heidrun A, van Groenestijn JW, de Bont JAM (2001) Isolation and characterization of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105(4):477–484

    Article  Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jordening H-J, Winter J (eds) Environmental biotechnology: concepts and applications AND environmental processes. Wiley-VCH Verlag GmbH, Weinheim, pp 145–167

    Google Scholar 

  • García-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266

    Article  PubMed  Google Scholar 

  • Garg SK, Tripathi M, Srinath T (2012) Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol 217:75–140

    CAS  PubMed  Google Scholar 

  • Greenwood, NN, Earnshaw A (1997) Chemistry of the elements 2nd ed Butterworth-Heinemann Oxford 4(4): 637-643

    Google Scholar 

  • Groves WA, Kecojevic VJ, Komljenovic D (2007) Analysis of fatalities and injuries involving mining equipment. J Safety Res 38:461–470

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    Article  CAS  Google Scholar 

  • Hennebel T, Boon N, Maes S, Lenz M (2015) Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. N Biotechnol 32(1):121–127

    Article  CAS  PubMed  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1986) Cadmium-binding proteins in Pseudomonas putida: pseudothioneins. Environ Health Perspect 65:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igiri BE, Okoduwa IR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:1–16

    Article  Google Scholar 

  • Ishibashi Y, Cervantes CS (1990) Silver chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56(7):2268–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques G, James AJ, Cynthia SP (2004) Avakian chromium hand book, written by Independent Environmental Technical Evaluation Group. CRC Press, Boca Raton, pp 272–289

    Google Scholar 

  • James BR (1996) Environ. The challenge of remediating chromium-contaminated soil. Environ Sci Technol 30(6):248–251

    Article  Google Scholar 

  • Jim M, Chen Oliver JH (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28(3):219–251

    Article  Google Scholar 

  • Kafilzadeh F, Sahragard P, Jamali H, Tahery Y (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. Afr J Microbiol Res 4(19):3084–3089

    Google Scholar 

  • Kanmani P, Aravind J, Preston D (2012) Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol 9:183–193

    Article  CAS  Google Scholar 

  • Kastner M, Miltner A (2016) Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl Microbiol Biotechnol 100(8):3433–3449

    Article  PubMed  Google Scholar 

  • Khan AG (2006) Mycorrhiza-remediation an enhanced form of phytoremediation. J Zhejiang Univ Sci 7(7):503–514

    Article  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kohl WH (1967) The electron microscope, Handbook of materials & technology for vacuum device. Reinhold Publishing, New York, pp 161–201

    Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990a) A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol 33:117–119

    Article  CAS  PubMed  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990b) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate. Microb Ecol 7:245–252

    Google Scholar 

  • Ksheminska HP, Taras MH, Galyna ZG, Mykhailo VG (2006) Extra-cellular chromate-reducing activity of the yeast cultures. Cent Eur Sci J 1(1):137–149

    CAS  Google Scholar 

  • Kumar RR, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization―a mycoremediation approach. Asian J Exp Biol Sci 2:342–347

    Google Scholar 

  • Languard S (1990) One hundred years of chromum and cancer a review of epidemoliogical evidence and selected case reports. Am J Ind Med 17:189–214

    Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102:5297–5304

    Article  CAS  PubMed  Google Scholar 

  • lenntech (n.d.). https://www.lenntech.com/periodic/water/chromium/chromium-andwater.htm#ixzz6DpJDf6My

  • Li Y, Pradhan NK, Foley R, Low GKC (2002) Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry. Talanta 57(6):1143–1153

    Article  CAS  PubMed  Google Scholar 

  • Losi ME, Frankenberger WT Jr (1994) Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74(3–4):405–413

    Article  CAS  Google Scholar 

  • Malik (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  PubMed  Google Scholar 

  • Mane P, Bhosle A (2012) Bioremoval of some metals by living algae Spirogyra sp. and Spirulina sp. from aqueous solution. Int J Environ Res 6:571–576

    CAS  Google Scholar 

  • Marta AP, María JA, Carlos MA (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56(1):11–18

    Article  Google Scholar 

  • Martello L, Fuchsman P, Sorensen M, Magar V, Wenning RJ (2007) Chromium geochemistry and bioaccumulation in sediments from the Lower Hackensack River. New Arch Environ Contam Toxicol 53(3):337–350

    Article  CAS  PubMed  Google Scholar 

  • Menn FM, Easter JP, Sayler GS (2008) Genetically engineered microorganisms and bio-remediation. In: Rehm H-J, Reed G (eds) Biotechnology: environmental processes II; 11b, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 443–457

    Google Scholar 

  • Mrassi AG, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int 22:15332–15346

    Article  Google Scholar 

  • Mrozik A, Piotrowska Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish J Environ Stud 12(1):15–25

    CAS  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    Article  CAS  PubMed  Google Scholar 

  • National Academy of Sciences (1980) Problems in risk estimation. Drinking water and health, vol 3. National Academy Press, Washington, DC, pp 25–65

    Google Scholar 

  • Nezha TJ, Wifak B, Hanane S, Soumya EA, Naïma EG (2011) Remediation of hexavalent chromium by consortia of indigenous bacteria from tannery waste-contaminated biotopes in Fez, Morocco. Int J Environ Stud 68(6):901–912

    Article  Google Scholar 

  • Nino VA, Marina KA, Tamar MK, Bakradze NG, Nelly AS, Nelly Ya T, Leila VT, Lia VL, Lali LA, Hoi-Ying H (2004) Effect of chromium(VI) action on Arthrobacter oxydans. Curr Microbiol 49(5):321–326

    Article  Google Scholar 

  • Okoduwa SIR, Igiri B, Udeh CB, Edenta C, Gauje B (2017) Tannery effluent treatment by yeast species isolates from watermelon. Toxics 5(1):1–6

    Article  Google Scholar 

  • Pal TK, Bhattacharyya S, Basumajumdar A (2010) Cellular distribution of bioaccumulated toxic heavy metals in Aspergillus niger and Rhizopus arrhizus. Int J Pharma Bio Sci 1(2):1–6

    CAS  Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 166(4):903–924

    Article  CAS  PubMed  Google Scholar 

  • Palmer CD, Puls RW (1994) Natural attenuation of hexavalent chromium in groundwater and soils EPA ground water issue, October EPA 540-5-94-505, 12 pp

    Google Scholar 

  • Pena-Castro JM, Martínez-Jerónimo F, Esparza-García F, Canizares-Villanueva RO (2004) Heavy metals removal by the microalga Scenedesmus incrassatulus in continuous cultures. Bioresour Technol 94:219–222

    Article  CAS  PubMed  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, DC, pp 139–236

    Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2000) Soils and environmental quality, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2(1):1–10

    Article  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A (2015) Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium Enterobacter cloacae b2-dha. J Environ Sci Health Part A 50:1136–1147

    Article  CAS  Google Scholar 

  • Rita B, Ana-Paula C, Antonio V, Paula VM (2005) Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS Microbiol Ecol 54(1):5–46

    Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 1(64):1782–1806

    Article  Google Scholar 

  • Sai Subhashini S, Kaliappan S, Velan M (2011) Removal of heavy metal from aqueous solution using Schizosaccharomyces pombe in free and alginate immobilized cells. In: 2nd international conference on environmental science and technology 6107, pp 111

    Google Scholar 

  • Samuel J, Paul ML, Ravishankar H, Mathur A, Saha DP, Natarajan C, Mukherje A (2013) The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential. Biodegradation 24(6):829–842

    Article  CAS  PubMed  Google Scholar 

  • Sankarammal M, Thatheyus A, Ramya D (2014) Bioremoval of cadmium using Pseudomonas fluorescens. Open J Water Pollut Treat 4(2):92–100

    Article  Google Scholar 

  • Sarika C (2019) Azo dyes decolorization using white rot fungi. Int J Appl Nat Sci 8(4):33–46

    Google Scholar 

  • Sayel H, Bahafid W, Joutey NT, Derraz K (2012) Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62(3):1269–1277

    Article  CAS  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geo-environmental engineering: site remediation waste containment and emerging waste management technologies geo-environmental engineering, vol 35. Wiley.. Environmental International, Hoboken, pp 50–55

    Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66(7):3083–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Wang Y (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherchia coli ATCC 33456. Appl Environ Microbiol 59:3171–3777

    Google Scholar 

  • Shukla KP, Sharma S, Singh KN, Singh V, Bisht S, Kumar V (2013) Rhizoremediation: a promising rhizosphere technology. In: Patil YB, Rao P (eds) Applied bioremediation: active and passive approaches. Intech, Rijeka, pp 331–347

    Google Scholar 

  • Silvia F, Milva P, Giacomo L, Simone G, Marcella R, Pamela Di B, Silvano EF (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeter Biodegr 66(1):63–70

    Article  Google Scholar 

  • Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeter Biodegr 101:56–65

    Article  CAS  Google Scholar 

  • Srivastava S, Dwivedi AK (2015) Biological wastes the tool for biosorption of arsenic. J Bioremed Biodegr 7:323–326

    Google Scholar 

  • Steliga T (2012) Role of fungi in biodegradation of petroleum hydrocarbons in drill waste. Polish J Environ Stud 21(2):471–479

    CAS  Google Scholar 

  • Steritt RM, Brown MJ, Lester JN (1990) Environ Pollut 24:313

    Article  Google Scholar 

  • Stern RM (1982) Chromium compounds: production and occupational exposure. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier Biomedical Press, New York, pp 5–47

    Chapter  Google Scholar 

  • Stowe CW (ed) (1987) Evolution of chromium ore fields. Van Nostrand Reinhold, New York, pp 1–22

    Google Scholar 

  • Sukumar M (2010) Reduction of hexavalent chromium by Rhizopus oryzae. Afr J Environ Sci Technol 4:412–418

    CAS  Google Scholar 

  • Tarrah DH, Martin GS, Chet A, Simion V, Weber JV (2004) In: Guertin J, Jacobs JA, Avakian CP (eds) Chromium(VI) Handbook. CRC Press, New York, pp 94–116

    Google Scholar 

  • Taştan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 101:870–876

    Article  PubMed  Google Scholar 

  • Terahara T, Xu X, Kobayashi T, Imada C (2015) Isolation and characterization of Cr(VI)-reducing actinomycetes from estuarine sediments. Appl Biochem Biotechnol 175(7):3297–3309

    Article  CAS  PubMed  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2007) Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresour Technol 98:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Thrash JC, Coates JD (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42(11):3921–3931

    Article  CAS  PubMed  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nolvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9(1):85–92

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1984) Environmental Monitoring Systems Laboratory. Frequency distributions by site/year for chromium, the results of samples collected at National Air Surveillance Network sites. Research Triangle Park, NC, US Environmental Protection Agency

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2001) A citizen’s guide to bioremediation EPA 524-F-01-001

    Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2e. Bioresour Technol 99:5574–5581

    Article  CAS  PubMed  Google Scholar 

  • Wang YT (2000) Microbial reduction of chromate. In: Lovely DR (ed) Environmental microbe-metal interactions. ASM, Washington, DC, pp 225–254

    Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Ozuna SC, Clark DS, Keasling JD (2002) A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation. Biotechnol Lett 24(8):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu W, Luo Y, Ma L, Li Y, Yang S (2009) Bio effects of chromium (III) on the growth of Spirulina platensis and its biotransformation. J Sci Food Agric 89:947–952

    Article  CAS  Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, MuszyNska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26(1):1–12

    Article  Google Scholar 

  • WRc (2015) Understanding the significance of chromium in drinking water. Defra-893004, Swindon, Wiltshire

    Google Scholar 

  • Xie Y, Fan J, Zhu W (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7:775–791

    Article  Google Scholar 

  • Yun G, Liu WH, Xu GM, Zeng XL, Hui G (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41(9):1981–1986

    Article  Google Scholar 

  • Zhaoming L, Yan W, Chengfeng L, Pengming L, Meiying G (2012) Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World J Microbiol Biotechnol 28(4):1585–1592

    Article  Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Microbiol Res 163:616–623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the Amity University, Haryana, authorities for the facilities and constant encouragement for research and innovation.

Conflict of Interest: We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, S., Khare, A., Khurana, S.M.P. (2021). Toxicity of Hexavalent Chromium and Its Microbial Detoxification Through Bioremediation. In: Shah, M.P. (eds) Removal of Emerging Contaminants Through Microbial Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_25

Download citation

Publish with us

Policies and ethics