Skip to main content

Advertisement

Log in

Application of compost for effective bioremediation of organic contaminants and pollutants in soil

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as ‘stimulants’ of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a ‘metabolic memory’ within developing and mature compost materials. Compost addition can thus be considered as a ‘super-bioaugmentation’ with a complex natural mixture of degrading microorganisms, combined with a ‘biostimulation’ by nutrient containing readily to hardly degradable organic substrates. It also improves the abiotic soil conditions, thus enhancing microbial activity in general. Finally, this minireview also aims at guiding potential users towards full exploitation of the potentials of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Abdelhafid R, Houot S, Barriuso E (2000) Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils. Soil Biol Biochem 32:389–401

    Article  CAS  Google Scholar 

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  PubMed  Google Scholar 

  • Adam IKU, Miltner A, Kästner M (2015) Degradation of 13C-labelled pyrene degradation in soil-compost mixtures and fertilized soil. Appl Microbiol Biotechnol 99:9813–9824

    Article  CAS  PubMed  Google Scholar 

  • Adam IKU, Rein A, Miltner A, da Costa Fulgêncio AC, Trapp S, Kästner M (2014) Experimental results and integrated modeling of bacterial growth on an insoluble hydrophobic substrate (phenanthrene). Environ Sci Technol 48:8717–8726

    Article  CAS  PubMed  Google Scholar 

  • Ahlawat OP, Gupta P, Kumar S, Sharma DK, Ahlawat K (2010) Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Ind J Microbiol 50:390–395

    Article  CAS  Google Scholar 

  • Ahmad R, Jilani G, Arshad M, Zahi ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Article  Google Scholar 

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44(8):743–752. doi:10.1139/cjm-44-8-743

    Article  CAS  PubMed  Google Scholar 

  • Alburquerque JA, de la Fuente C, Bernal MP (2011) Improvement of soil quality after “alperujo” compost application to two contaminated soils characterised by differing heavy metal solubility. J Environ Manag 92:733–741

    Article  CAS  Google Scholar 

  • Alburquerque JA, Gonzalve J, Tortosa G, Baddi GA, Cegarra J (2009) Evaluation of “alperujo” composting based on organic matter degradation, humification and compost quality. Biodegradation 20:257–270

    Article  CAS  PubMed  Google Scholar 

  • Al-Daher R, Al-Ahwadi N, Yateem A, Balba MT (2001) Compost Soil piles for treatment of oil contaminated Soil. Soil Sed Contam 10(2):197–209

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. P Natl Acad Sci 105:11512–11519

    Article  CAS  Google Scholar 

  • Alvey S, Crowley DE (1995) Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J Environ Qual 24:1156–1162

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated waste using Composting strategies. Crit Rev Environ Sci Technol 34:249–289

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736. doi:10.1002/jctb.1276

    Article  CAS  Google Scholar 

  • Barriuso E, Houot S, Serra-Wittling C (1997) Influence of compost addition to Soil on the behaviour of herbicides. Pest Sci 49:65–75

    Article  CAS  Google Scholar 

  • Bastida F, Jemlich N, Lima K, Morris BEL, Richnow HH, Hernandez T, von Bergen M, Garcia C (2015) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics. doi:10.1016/j.jprot.2015.07.023

    PubMed  Google Scholar 

  • Benoit P, Barriuso E, Calvet R (1998) Biosorption characterization of herbicides, 2,4,-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 37(7):1271–1282

    Article  CAS  Google Scholar 

  • von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA, Schmidt F, Richnow HH, Seifert J (2013) Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J 7:1877–1885

    Article  CAS  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    Article  CAS  PubMed  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252. doi:10.1021/Es960383u

    Article  CAS  Google Scholar 

  • Breitung J, Bruns-Nagel D, Steinbach K, Kaminski L, Gemsa D, von Löw E (1996) Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol 44:795–800

    Article  CAS  PubMed  Google Scholar 

  • Bruns-Nagel D, Dryzyzga O, Steinbach K, Schmidt TC, von Löw E, Gorontzy T, Blotevogel K-H, Gemsa D (1998) Anaerobic/aerobic composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environ Sci Technol 32:1676–1679

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71. doi:10.1016/S0065-2164(08)70052-2

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) Microbial metabolism of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp. 41–68

    Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: McGenity T, van der Meer JR, de Lorenzo V (eds) Timmis KN. Springer, Handbook of Hydrocarbon and Lipid Microbiology, pp. 2079–2110

    Google Scholar 

  • Certini G, Scalenghe R, Woods WI (2013) The impact of warfare on the soil environment. Earth Sci Rev 127:1–15

    Article  CAS  Google Scholar 

  • Chefetz B, Xing B (2009) Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: a review. Environ Sci Technol 43:1680–1688

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xua P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavymetals by composting: applications, microbes and future research needs. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.05.003

    Google Scholar 

  • Covino S, Fabianova T, Kresinova Z, Cvancarova M, Burianova E, Filipova A, Voriskova J, Baldrian P, Cajthaml T (2015) Polycyclic aromatic hyrdrocarbons degradation and microbial community shifts during composting of creosote-treated wood. J Haz Mat. doi:10.1016/j.jhazmat.2015.08.023

    Google Scholar 

  • Crocker F, Indest K, Fredrickson H (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290

    Article  CAS  PubMed  Google Scholar 

  • De Gannes V, Eudoxie G, Hickey WJ (2013a) Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Biores Technol 133:573–580

    Article  CAS  Google Scholar 

  • De Gannes V, Eudoxie G, Hickey WJ (2013b) Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4:164

    PubMed  PubMed Central  Google Scholar 

  • Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  CAS  PubMed  Google Scholar 

  • Dickerson GW (2001) Vermicomposting: guide H-164 (PDF). New Mexico State University

  • Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kögel-Knabner I, Smalla K (2013) Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiol Ecol 86:15–25

    Article  CAS  PubMed  Google Scholar 

  • Dumont MG, Murrell JC (2005) Innovation: stable isotope probing — linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt C, Grathwohl P (2002) Time scales of organic contaminant dissolution from complex source zones: coal tar vs. blobs. J Contam Hydrol 59:45–66

    Article  CAS  PubMed  Google Scholar 

  • EC (1999) The council of the European Union, COUNCIL DIRECTIVE 1999/31/EC of 26 April 1999 on the landfill of waste.

  • EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and the council of 18 December 2006 concerning Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

  • Eggen T (1999) Application of fungal substrate from commercial mushroomproduction - Pleuorotus ostreatus - for bioremediation of creosote contaminated soil. Int Biodet Biodeg 44:117–126

    Article  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell M, Jones DL (2010) Use of composts in the remediation of heavy metal contaminated soil. J Haz Mat 175:575–582

    Article  CAS  Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microb Rev 55:225–233

    CAS  Google Scholar 

  • Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, Gophna U, Sharan R, Ruppin E (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Comm. doi:10.1038/ncomms1597

    Google Scholar 

  • Gandolfi I, Sicolo M, Franzetti A, Fontanarosa E, Santagostino A, Bestetti G (2010) Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Biores Technol 101:568–575

    Article  CAS  Google Scholar 

  • García-Delgado C, D’Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E (2015) Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on themicrobial community and polycyclic aromatic hydrocarbons biodegradation. Sci Tot Environ 508:20–28

    Article  CAS  Google Scholar 

  • Geng C, Haudin C-S, Zhang Y, Lashermes G, Houot S, Garnier P (2015) Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere 119:423–431

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal S, Ramaswami A, Luthy RG (1996) Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems. Environ Sci Technol 30:1282–1291

    Article  CAS  Google Scholar 

  • Grotenhuis T, Field J, Wasseveld R, Rulkens W (1999) Biodegradation of polyaromatic hydrocarbons (PAH) in polluted soil by the white-rot fungus Bjerkandera. J Chem Technol Biotechnol 71:359–360

    Article  Google Scholar 

  • Haderlein A, Legros R, Ramsay B (2001) Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil. Appl Microbiol Biotechnol 56:555–559

    Article  CAS  PubMed  Google Scholar 

  • Häggblom M, Valo RJ (1985) Bioremediation of chlorophenol wastes. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of Toxic Organic Chemicals. John Wiley & Sons, New York, pp. 389–434

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–191

    Article  CAS  PubMed  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of Chemicals In Soil on their biodegradability and extractability. Environ Sci Technol 29(2):537–545

    Article  CAS  PubMed  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  CAS  PubMed  Google Scholar 

  • Hernandez T, Garcia E, Garcia C (2015) A strategy for marginal semiarid degraded soil restoration: A sole addition of compost at a high rate. A Five-Year Field Experiment. Soil Biol Biochem 89:61–71

    Article  CAS  Google Scholar 

  • van Herwijnen R, Hutchings TR, Al-Tabbaa A, Moffat AJ, Johns ML, Ouki SK (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Poll 150:347–354

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enz Microbiol Technol 30:454–466

    Article  CAS  Google Scholar 

  • Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ (2002) Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J Appl Microbiol 92:127–133

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Poll 133:71–84

    Article  CAS  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13(10):2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a] pyrene. Int Biodet Biodeg 45(1–2):57–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3(2):136–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kästner M (2000) Degradation of aromatic and polyaromatic compounds. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology, 2nd edition, vol 11b. Weinheim, Environmental Processes. Wiley-VCH, pp. 211–239

    Google Scholar 

  • Kästner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl Microbiol Biotechnol 44(5):668–675

    Article  PubMed  Google Scholar 

  • Kästner M, B-J M, Mahro B (1998) PAH degradation and survival of degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    PubMed  PubMed Central  Google Scholar 

  • Kästner M, Nowak KM, Miltner A, Trapp S, Schäffer A (2014) Classification and modelling of non-extractable residue (NER) formation of xenobiotics in soil - a synthesis. Crit Rev Environ Sci Technol 44:2107–2171

    Article  CAS  Google Scholar 

  • Kirchmann H, Ewnetu W (1998) Biodegradation of petroleum-based oil waste through composting. Biodegradation 9:151–156

    Article  CAS  PubMed  Google Scholar 

  • Kues U (2015) Fungal enzymes for environmental management. Curr Op Biotechnol 33:268–278

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Laine MM, Jörgensen KS (1997a) Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environ Sci Technol 31:371–378

    Article  CAS  Google Scholar 

  • Laine MM, Ahtiainen J, Wagman N, Öberg LG, Jörgensen KS (1997b) Fate and toxicity of chlorophenols, polychlorinated dibenzo-p-dioxins and dibenzofurans during composting of contaminated sawmill soil. Environ Sci Technol 31:3224–3250

    Google Scholar 

  • Lazcano C, Gómez-Brandón M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Lee LS, Rao PSC, Okuda I (1992) Equilibirum partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ Sci Technol 26:2110–2115

    Article  CAS  Google Scholar 

  • Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60:336–342

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu H, Ren L, He L (2013) Experimental and modeling approaches for food waste composting: A review. Chemosphere 93:1247–1257

    Article  CAS  PubMed  Google Scholar 

  • Loick N, Hobbs PJ, Hale MCD, Jones DL (2012) Bioremediation of poly-aromatic hyrdocarbon (PAH)-contaminated Soil by Composting. Crit Rev Environ Sci Technol 39(4):271–332

    Article  CAS  Google Scholar 

  • Lu X-Y, Zhang T, Fang HH-P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371

    Article  CAS  PubMed  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils At Manufactured Gas Plant sites. Environ Sci Technol 28(6):266–276

    Article  Google Scholar 

  • Luthy RG, Ramaswami A, Ghoshal S (1993) Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environ Sci Technol 27:2914–2918

    Article  CAS  Google Scholar 

  • Madsen T, Kristensen P (1997) Effects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Cheml 16:631–637

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Rein A, Winding A, de Jonge LW, Trapp S, Karlson UG (2013a) Impact of activated carbon, biochar and compost on the desorption and mineralization of phenenthrene in soil. Environ Poll 181:200–210

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Rein A, Winding A, Trapp S, Karlson UG (2013b) Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere 90(6):1767–1778. doi:10.1016/j.chemosphere.2012.07.048

    Article  CAS  PubMed  Google Scholar 

  • Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarhons in artificial and natural aqueous solutions. Environ Sci Technol 41(17):6148–6155. doi:10.1021/Es070495t

    Article  CAS  PubMed  Google Scholar 

  • Mayer P, Karlson U, Christensen P, Johnsen A, Trapp S (2005) Quantifying the effect of medium composition on the diffusive mass transfer of Hydrophobic Organic Chemicals through unstirred boundary layers. Environ Sci Technol 39:6123–6129

    Article  CAS  PubMed  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: A critical perspective. Environ Intern 37:1362–1375

    Article  CAS  Google Scholar 

  • Megharaj M, Wittich RW, Blanco E, Pieper DH, Timmis KN (2002) Superior survival and degradation of dibenzo-p-dioxin and dibenzofuran in soil by soil-adapted Sphingomonas sp. strain RW1. Appl Microbiol Biotechnol 48:109–114

    Article  Google Scholar 

  • Michels J, Track T, Gehrke U, Sell D (2000) Leitfaden - biologische verfahren zur bodensanierung. Veröffentlichungen des BMBF (Grün-Weiße-Reihe), Umweltbundesamt, Berlin

    Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Monroy F, Aira M, Domínguez J (2008) Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl Soil Ecol 39:127–132

    Article  Google Scholar 

  • Moorman TB, Cowan JK, Arthur EL, Coats JR (2001) Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol Fert Soil 33:541–545

    Article  CAS  Google Scholar 

  • Morimoto K, Tatsumi K (1997) Effect of humic substances on the enzymatic formation of OCDD from PCP. Chemosphere 34:1277–1283

    Article  CAS  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and Composting Times. PLoS one 8(11):e79512. doi:10.1371/journal.pone.0079512

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53(3):435–442

    Article  CAS  PubMed  Google Scholar 

  • Öberg LG, Glas B, Swanson SE, Rappe C, Paul KG (1990) Peroxidase-catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch Environ Contam Toxicol 19:930–938

    Article  PubMed  Google Scholar 

  • Ortega-Calvo JJ, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from Soil. Appl Environ Microbiol 64(8):3123–3126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D, Daims H, Wagner M (2015) Cyanate as an energy source for nitrifiers. Nature 524:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pande S, Merker H, Bohl K, Reichelt M, Schuster S, de Figueiredo L, Kaleta C, Kost C (2014) Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8:953–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Zhang Y, Su J, Qiu Q, Jia Z, Zhu YG (2013) Bacterial communities predominant in the degradation of 13C4-4,5,9,10-pyrene during composting. Biores Technol 143:608–614

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955. doi:10.1111/j.1574-6976.2008.00127.x

    Article  CAS  PubMed  Google Scholar 

  • Pérez DV, Alcantara S, Ribeiro CC, Pereira R, Fontes GC, Wasserman M, Venezuelad TC, Meneguellia NA, de Macedoa JR, Barradase CAA (2007) Composted municipal waste effects on chemical properties of a Brazilian soil. Biores Technol 98:525–533

    Article  CAS  Google Scholar 

  • Phan CW, Sabaratnam V (2012) Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl Microbiol Biotechnol 96:863–873

    Article  CAS  PubMed  Google Scholar 

  • Pignatello JJ, Xing BS (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11. doi:10.1021/Es940683g

    Article  CAS  Google Scholar 

  • Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40:7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microb Rev 58(4):755–805

    CAS  Google Scholar 

  • Pronk GJ, Heister K, Kögel-Knabner I (2013) Is turnover and development of organic matter controlled by mineral composition? Soil Biol Biochem 67:235–244

    Article  CAS  Google Scholar 

  • Prosser J (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13:439–446

    Article  CAS  PubMed  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AAM (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  CAS  PubMed  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatusfor bioremediation of DDT-contaminated soil. Int Biodet Biodeg 64:397–402

  • Rein A, Adam IKU, Miltner A, Brumme K, Kästner M, Trapp S (2015) Simulations and impact of bacterial activity on the turnover of insoluble hydrophobic substrates (phenanthrene and pyrene). J Haz Mat submitted

    Google Scholar 

  • Rodriguez E, Garcia-Encina PA, Stams AJM, Maphosa F, Sousa DZ (2015) Meta-omics approaches to understand and improve wastewater treatment systems. Rev Environ Sci Bio/Technol 14:385–406

    Article  CAS  Google Scholar 

  • Ros M, Rodríguez I, Hernández CGT (2010) Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Biores Technol 101:6916–6923

    Article  CAS  Google Scholar 

  • Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137

    Article  CAS  PubMed  Google Scholar 

  • Sasek V, Bhatt M, Cajthaml T, Malachova K, Lednicha D (2003) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44:336–342

    Article  CAS  PubMed  Google Scholar 

  • Scelza R, Rao MA, Gianfreda L (2008) Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biol Biochem 40:2162–2169

    Article  CAS  Google Scholar 

  • Schloss PD, Hay AG, Wilson DB, Walker LP (2003) Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol Ecol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Seifert J, Herbst F-A, Nielsen PH, Planes FJ, Ferrer M, von Bergen M (2013) Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics 13:2786–2804

    CAS  PubMed  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Poll 112:269–283

    Article  CAS  Google Scholar 

  • Smith KEC, Thullner M, Wick LY, Harms H (2009) Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environ Sci Technol 43:7205–7211

    Article  CAS  PubMed  Google Scholar 

  • Smith KEC, Thullner M, Wick LY, Harms H (2011) Dissolved organic carbon enhances the mass transfer of Hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase. Environ Sci Technol 45:8741–8747

    Article  CAS  PubMed  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  PubMed  Google Scholar 

  • Steger K, Elind Y, Olsson J, Sundh I (2005) Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microb Ecol 50:163–170

    Article  CAS  PubMed  Google Scholar 

  • Stringfellow WT, Alvarez-Cohen L (1999) Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Res 33(11):2535–2544

    Article  CAS  Google Scholar 

  • Takaku H, Kodaira S, Kimoto A, Nashimoto M, Takagi M (2006) Microbial communities in the garbage composting with rice Hull as an amendment revealed by culture-dependent and independent approaches. J Biosci Bioeng 101:42–50

    Article  CAS  PubMed  Google Scholar 

  • Thummes K, Kämpfer P, Jäckel U (2007) Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material. Sys Appl Microbiol 30(5):418–429

    Article  CAS  Google Scholar 

  • Trellu C, Mousset E, Pechaud Y, Huguenot E, van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J Haz Mat 306:149–174

    Article  CAS  Google Scholar 

  • UBA (2015) PUblisher. [German Environmental Agency] http://www.umweltbundesamt.de/daten/bodenbelastung-land-oekosysteme/altlasten-ihre-sanierung 2015

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of Soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71(7):3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valo R, Salkinoja-Salonen M (1986) Bioreclamation of chlorophenol-contaminated soil by composting. Appl Microbiol Biotechnol 25:68–75

    CAS  Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Op Biotechnol 33:95–102

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Sterkenburg A, Vanandel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons - effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36(4):548–552

    Article  CAS  Google Scholar 

  • Wang C, Guo XH, Deng H, Dong D, Tu QP, Wu WX (2014) New insights into the structure and dynamics of actinomycetal community during manure composting. Appl Microbiol Biotechnol 98:3327–3337

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z (2015) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Biores Technol 198:395–402

    Article  CAS  Google Scholar 

  • Wehrer M, Rennert T, Totsche K-U (2013) Kinetic control of contaminant release from NAPLs - experimental evidence. Environ Poll 179:315–325

    Article  CAS  Google Scholar 

  • Weiss M, Geyer R, Gunther T, Kaestner M (2004b) Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes. Environ Toxicol Chem 23(9):2049–2060

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Geyer R, Russow R, Richnow HH, Kastner M (2004a) Fate and metabolism of [15N]2,4,6-trinitrotoluene in soil. Environ Toxicol Chem 23(8):1852–1860

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35(2):354–361. doi:10.1021/Es001384w

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann U (1994) Der Steinkohleteer und seine Destillationsprodukte - Ein Beitrag zur Geschichte der Technik und der Bodenverschmutzung. In: Wiegert B (ed) Biologischer Abbau von polyzyklichen aromatischen Kohlenwasserstoffen. Schriftenreihe Bologische Abwasserreinigung. SFB 193, TU Berlin, Berlin, pp. 3–18

    Google Scholar 

  • Williams RT, Ziegenfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9:137–144

    Article  Google Scholar 

  • Xu F, Webb JP (2015) Tianjin clean-up after explosion. Can Med Assoc J 187:E404

    Article  Google Scholar 

  • Zhang Y, Lashermes G, Houot S, Zhu Y-G, Barriuso E, Garnier P (2014) COP-compost: a sofware to study the degradation of organic pollutants in composts. Environ Sci Poll Res 21(4):2761–2776

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu Y-G, Houot S, Qiao M, Nunan N, Garnier P (2011) Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environ Sci Poll Res 18:1574–1584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the framework of the European Union project “Molecular Approaches and MetaGenomic Investigations for optimizing Clean-up of PAH contaminated sites (MAGICPAH)” within the seventh framework programme (FP7-KBBE, #245226) and by general funding of the Helmholtz-Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kästner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kästner, M., Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl Microbiol Biotechnol 100, 3433–3449 (2016). https://doi.org/10.1007/s00253-016-7378-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7378-y

Keywords

Navigation