Skip to main content

Secondary Criteria Air Pollutants: Environmental Health Effects

  • Chapter
  • First Online:
Criteria Air Pollutants and their Impact on Environmental Health

Abstract

Air quality has become a serious concern in mostly urban areas and covering different parts of the world. Over the last few years, there have been tremendous studies reported so far related to harmful health effects due to bad air quality in urban areas across the globe. Among all air pollutants, criteria air pollutants are specifically highlighted for critically analysing about the environmental impacts in relation to plants species, materials, health, biosphere, etc. These air pollutants are in focus due to their toxicity, reactivities and the severity of their impacts. Among them very less information has been reported on secondary criteria air pollutant. Hence, the present chapter focuses on the nature and behaviour of secondary criteria air pollutants with respect to their impacts on environment. It will also highlight the mechanisms involved in examining their impacts, toxicity and overall assimilation plus fate of their chemical reactivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamlid D, Tørseth K, Venn K, Stuanes AO, Solberg S, Hylen G et al (2000) Changes of forest health in Norwegian boreal forests during 15 years. For Ecol Manag 127(1–3):103–118

    Article  Google Scholar 

  • Agathokleous E, Saitanis CJ, Koike T (2015) Tropospheric O3, the nightmare of wild plants: a review study. J Agric Meteorol 71(2):142–152

    Article  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    Article  CAS  PubMed  Google Scholar 

  • Akimoto N (2006) Tropospheric ozone a growing threat. Acid Deposition and Oxidant Research Center, Niigata, Japan. 26 р

    Google Scholar 

  • Alghamdi MA, Khoder M, Harrison RM, Hyvärinen AP, Hussein T, Al-Jeelani H, Abdelmaksoud AS, Goknil MH, Shabbaj II, Almehmadi FM, Lihavainen H, Kulmala M, Hämeri K (2014) Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmos Environ 94:205–214

    Article  CAS  Google Scholar 

  • Ali K, Inamdar S, Beig G, Ghude S, Peshin S (2012) Surface ozone scenario at Pune and Delhi during the decade of 1990s. J Earth Sys Sci 121:373–383

    Article  CAS  Google Scholar 

  • Alscher RG, Amthor JS (1988) The physiology of free radical scavenging: maintenance and repair processes. In: Schulte-Hostede S, Darral NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism Elsevier Applied Science. U.K pp, London, pp 94–115

    Google Scholar 

  • Andersson C, Engardt M (2010) European ozone in a future climate: importance of changes in dry deposition and isoprene emissions. J Geophys Res Atmos 115:D02303. https://doi.org/10.1029/2008jd011690

    Article  Google Scholar 

  • Andrade MdF, Kumar P, de Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, de Miranda RM, Albuquerque T, Gonçalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82

    Article  CAS  Google Scholar 

  • Andrey J, Cuevas E, Parrondo MC, Alonso-Pérez S, Redondas A, Gil-Ojeda M (2014) Quantification of ozone reductions within the Saharan air layer through a 13-year climatologic analysis of ozone profiles. Atmos Environ 84:28–34

    Article  CAS  Google Scholar 

  • Aneja VP, Businger S, Li Z, Claiborn CS, Murthy A (1991) Ozone climatology at high elevations in the Southern Appalachians. J Geophys Res Atmos 96:1007–1021

    Article  Google Scholar 

  • Aneja VP, Mathur R, Arya SP, Li Y, George C, Murray JR, Manuszak TL (2000) Climatology of diurnal trends and vertical distribution of ozone in the atmospheric boundary layer in urban North Carolina. J Air Waste Manag Assoc 50(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118:1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anfossi D, Sandroni S, Viarengo S (1991) Tropospheric ozone in the nineteenth century: the Moncalieri series. J Geophys Res Atmos 96(D9):17,349–17,352

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOX. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • Bako-Biro Z, Wargocki P, Weschler CJ, Fanger PO (2004) Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices

    Google Scholar 

  • Ballester F, Rodriguez P, Iniguez C, Saez M, Daponte A, Galán I et al (2006) Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. J Epidemiol Community Health 60(4):328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholomay GA, Eckert RT, Smith KT (1997) Reductions in tree-ring widths of white pine following ozone exposure at Acadia National Park, Maine, USA. Canad J For Res Rev Canadienne De Recherche Forestiere 27:361–368

    Article  Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Poll 146:678–691

    Article  CAS  Google Scholar 

  • Beig G, Ghude SD, Polade SD, Tyagi B (2008) Threshold exceedances and cumulative ozone exposure indices at tropical suburban site. Geophys Res Lett 35:L02802

    Article  CAS  Google Scholar 

  • Bell ML, Zanobetti A, Dominici F (2014) Who is more affected by ozone pollution? A systematic review and meta-analysis. Am J Epidemiol 180(1):15–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Bender J, Muntiferang RB, Lin JC, Weigel HJ (2006) Growth and nutritive quality of Poa pratensis as influenced by ozone and fumigation. Environ Pollut 142:109–115

    Article  CAS  PubMed  Google Scholar 

  • Bernard NL, Gerbeer MJ, Astre CM, Saintot MJ (1999) Ozone measurement with passive samplers: validation and use for ozone pollution assessment in Montpellier. France Environ Sci Technol 1999(33):217–222

    Article  Google Scholar 

  • Betzelberger AM, Gillespie KM, Mcgrath JM, Koester RP, Nelson R, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1561–1589

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot London 91:179–194

    Article  CAS  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Sagar K, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt Z, Doğan G, Arslanbaş D, Pekey B, Pekey H, Dumanoğlu Y, Bayram A, Tuncel G (2015) Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environ Monit Assess 187:590

    Article  PubMed  CAS  Google Scholar 

  • Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Estep K, Amini H, Apte JS, Balakrishnan K, Barregard L, Broday DM, Feigin V, Ghosh S, Hopke PK, Knibbs LD, Kokubo Y, Liu, Ma YS, Morawska L, Sangrador JLT, Shaddick G, Anderson HR, Vos T, Forouzanfar MH, Burnett RT, Cohen A (2016) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Broberg MC, Feng ZZ, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality – a summary. Environ Poll 197:203–213

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Poll 147:438–445

    Article  CAS  Google Scholar 

  • Calatayud V, Cerveró J, Calvo E, García-Breijo F-J, Reig-Armiñana J, Sanz MJ (2011) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Poll 159:55–63

    Article  CAS  Google Scholar 

  • Caregnato FF, Bortolin RC, Junior AMD, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere 93:320–330

    Article  CAS  PubMed  Google Scholar 

  • Carvalho VSB, Freitas ED, Martins LD, Martins JA, Mazzoli CR, Andrade MDF (2015) Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environ Sci Pol 47:68–79

    Article  CAS  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chai F, Gao J, Chen Z, Wang S, Zhang Y, Zhang J, Zhang H, Yun Y, Ren C (2014) Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J Environ Sci 26:75–82

    Article  CAS  Google Scholar 

  • Chang KL, Petropavlovskikh I, Cooper OR, Schultz MG (2017) Trend analysis of surface ozone from ground-based observations. Elem Sci Anth 5:50

    Article  Google Scholar 

  • Chao CYH (2001) Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build Environ 36:999–1007

    Article  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxico Environ Safety 111:286–294

    Article  CAS  Google Scholar 

  • Chelani AB (2013) Study of extreme CO, NO2 and O3 concentrations at a traffic site in Delhi: statistical persistence analysis and source identification. Aerosol Air Qual Res 13:377–384

    Article  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Huang W, Wong CM, Wang Z, Thach TQ, Chen B, Kan H, CAPES Collaborative Group (2012) Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: the China air pollution and health effects study (CAPES). Environ Res 118:101–106

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shen G, Liu W, Du W, Su S, Duan Y, Lin N, Zhuo S, Wang X, Xing B, Tao S (2016) Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China. Atmos Environ 125:265–271

    Article  CAS  Google Scholar 

  • Cheng H, Wang Z, Feng J, Chen H, Zhang F, Liu J (2012) Carbonaceous species composition and source apportionment of PM2.5 in urban atmosphere of Wuhan. Ecol Environ Sci 9:1574–1579

    Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordonez C, Sarrat C, Zbinden R, Thouret V, Athie G, Cousin JM (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    Article  CAS  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2004) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa 2:000029

    Google Scholar 

  • Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T, McDermid IS, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery MA (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348

    Article  CAS  PubMed  Google Scholar 

  • Coyle M, Smith RI, Stedman JR, Weston KJ, Fowler D (2002) Quantifying the spatial distribution of surface ozone concentration in the UK. Atmos Environ 36:1013–1024

    Article  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    Article  Google Scholar 

  • Darling EK, Cros CJ, Wargocki P, Kolarik J, Morrison GC, Corsi RL (2012) Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements. Build Environ 57:370–376

    Article  Google Scholar 

  • Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos Environ 41:9091–9098

    Article  CAS  Google Scholar 

  • Diara C, Castagna A, Baldan B, Mensuali Sodi A, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. New Phytol 168:351–364

    Article  CAS  PubMed  Google Scholar 

  • Duenas C, Fernandez MC, Canete S, Carretero J, Liger E (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Sci Total Environ 299:97–113

    Article  CAS  PubMed  Google Scholar 

  • EANET (2006) Data report on acid deposition on East Asia region 2005. Network Centre of EANET, Japan. http://www.eanet.cc/. Accessed 16 Aug 2015

  • ECA (2016) Air quality in Europe—2016 report. EEA Report No 28/2016. https://www.eea.europa.eu/publications/airquality-in-europe-2016. Accessed 13 Mar 2018. European Environment Agency (ECA), Luxembourg

  • Eckmullner O, Sterba H (2000) Crown condition, needle mass, and sapwood area relationships of Norway spruce (Picea abies). Canad J For Res Revue Canadienne De Recherche Forestiere 30:1646–1654

    Article  Google Scholar 

  • EEA (2016) Air quality in Europe—2016 report. European Environment Agency. https://www.epa.gov/ozone-pollution/health-effects-ozone-pollution. Accessed 12 Mar 2018. United States Environmental Protection Agency (EPA)

  • Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayshi K, Oanh OTR, Quadir QF, Wahid A (2009) A comparison of North-American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Fang X, Xie Y, Li L (2003) Effects of dust storms on the air pollution in Beijing. Water Air Soil Poll Focus 3(2):93–101

    Article  CAS  Google Scholar 

  • Fang Y, Naik V, Horowitz LW, Mauzerall DL (2013) Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos Chem Phys 13:1377–1394

    Article  CAS  Google Scholar 

  • Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ (2012) Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32:81–95

    Article  PubMed  Google Scholar 

  • Farhat N, Ramsay T, Jerrett M, Krewski D (2013) Short-term effects of ozone and PM2.5 on mortality in 12 Canadian cities. J Environ Prot 4:18–32

    Article  CAS  Google Scholar 

  • Felzer BS, Cronin T, Reilly JM, Melillo JM, Wang Z (2007) Impacts of ozone on trees and crops. C R Geoscience 339:784–798

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analyses. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008a) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Kobayashi K, Wang X, Feng Z (2009) A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chinese Sci Bull 54:249–255

    CAS  Google Scholar 

  • Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Niu J, Zhang W, Wang X, Yao F, Tian Y (2011) Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads. Trees 25:617–625

    Article  CAS  Google Scholar 

  • Fiala J, Cernikovsky L, de Leeuw F, Kurfuerst P (2003) Air pollution by ozone in Europe in Summer 2003. Overview of exceedances of EC ozone threshold values during the summer season April-August 2003 and comparisons with previous years, Report to the European Commission by the European Environment Agency. European Topic Centre on Air and Climate Change. European Environment Agency, Copenhagen

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science (Washington, DC) 276:1045–1052

    Article  CAS  Google Scholar 

  • Fischer EV, Jaffe DA, Weatherhead EC (2011) Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: potential causes of variability and timescale for trend detection. Atmos Chem Phys 11:5641–5654

    Article  CAS  Google Scholar 

  • Fisk WJ (2015) Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures. Build Environ 86:70–80

    Article  Google Scholar 

  • Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S et al (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388:1659–1724

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 129–234

    Google Scholar 

  • Fowler D, Cape JN, Leith ID, Paterson IS, Kinnaird JW, Nicholson IA (1998) Effects of air filtration at small SO2 and NO2 concentrations on the yield of barley. Environ Poll 53:135–149

    Article  Google Scholar 

  • Fowler D, Pilegaard K, Sutton M, Ambus P, Raivonen M et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267

    Article  CAS  Google Scholar 

  • Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–194

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Ashmore MR, Mills G, Hayes F, Davison A (2003) Critical levels for semi-natural vegetation. In: Karlsson PE, Sellden G, Pleijel H (eds) Establishing ozone critical levels II. IVL, Stockholm, pp 183–198

    Google Scholar 

  • Galbally IE, Schultz MG, Buchmann B, Gilge S, Guenther F, Koide H, Oltmans S, Patrick L, Scheel H-E, Smit H, Steinbacher M, Steinbrecht W, Tarasova O, Viallon J, Volz-Thomas A, Weber M, Wielgosz R, Zellweger C (2013) Guidelines for continuous measurement of ozone in the troposphere, GAW Report No 209, Publication WMO-No. 1110, ISBN: 978-92-63-11110- 4, WMO, Geneva

    Google Scholar 

  • Gao W, Tie X, Xu J, Huang R, Mao X, Zhou G, Chang L (2017) Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci Total Environ 603:425–433

    Article  PubMed  CAS  Google Scholar 

  • Ghude SD, Sachin D, Fadnavis S, Beig G, Polade SD, Vander ARJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophy Res 113:D20305

    Article  CAS  Google Scholar 

  • Gielen B, Löw M, Deckmyn G, Metzger U, Franck F, Heerdt C, Ceulemans R (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. J Exper Bot 58:785–795

    Article  CAS  Google Scholar 

  • Gilliland FD, Berhane K, Rappaport EB, Thomas DC, Avol E, Gauderman WJ, London SJ, Margolis HG, McConnell R, Islam T, Peters JM (2001) The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 12:43–54

    Article  CAS  PubMed  Google Scholar 

  • Giorgi F, Chameides WL (1985) The rainout parameterization in a photochemical model. J Geophys Res 90:7872–7880

    Article  CAS  Google Scholar 

  • Glas B, Stenberg B, Stenlund H, Sunesson A-L (2015) Exposure to formaldehyde, nitrogen dioxide, ozone, and terpenes among office workers and associations with reported symptoms. Int Arch Occup Environ Health 88:613–622

    Article  CAS  PubMed  Google Scholar 

  • Gravano E, Bussotti F, Strasser RJ, Schaub M, Novak K, Skelly J, Tani C (2004) Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics. Physiologia Plantarum 121:620–633

    Article  CAS  Google Scholar 

  • Grini A, Zanis P, Balis D (2005) Tropospheric ozone changes at unpolluted and semipolluted regions induced by stratospheric ozone changes. J Geophys Res 110:D02302

    Article  Google Scholar 

  • Grøntoft T, Raychaudhuri MR (2004) Compilation of tables of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmos Environ 38:533–544

    Article  CAS  Google Scholar 

  • Guan Q, Cai A, Wang F, Yang L, Xu C, Liu Z (2017) Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China. Environ Pollut 230:189–198. https://doi.org/10.1016/j.envpol.2017.06.045

    Article  CAS  PubMed  Google Scholar 

  • Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606

    Article  CAS  Google Scholar 

  • Harmens H (2014) Air pollution and vegetation: ICP Vegetation annual report 2013/2014 Type of book: monografija Formal editor/s: Harmens, Harry; Mills, Gina; Hayes, Felicity; Sharps, Katrina, Frontasyeva, Marina.

    Google Scholar 

  • Hassan IA, Tewfik I (2006) CO2 photo assimilation, chlorophyll fluorescence, lipid peroxidation and yield in cotton (Gossypium hirsutum L. cv Giza 65) in response to O3. World Rev Sci Techno Sust Dev 3:70–78

    Article  Google Scholar 

  • Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). ICP Vegetation Programme Coordination Centre, CEH Bangor

    Google Scholar 

  • He JJ, Gong SL, Yu Y, Yu LJ, Wu L, Mao HJ, Song CB, Zhao SP, Liu HL, Li XY, Li RP (2017) Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ Pollut 223:484–496

    Article  CAS  PubMed  Google Scholar 

  • Heagle AS, Miller JE, Booker FL, Pursley WA (1999) Ozone stress, carbon dioxide enrichment, and nitrogen fertility interactions in cotton. Crop Sci 39:731–741

    Article  CAS  Google Scholar 

  • Health Effects Institute (HEI) (2010) Public health and air pollution in Asia (PAPA): coordinated studies of short-term exposure to air pollution and daily mortality in four cities, HEI research report 154. Health Effects Institute, Boston

    Google Scholar 

  • HEI (2011) Public health and air pollution in Asia (PAPA): coordinated studies of short-term exposure to air pollution and daily mortality in two Indian cities. Research report 157. Health Effects Institute, Boston, MA

    Google Scholar 

  • Herbinger K, Then C, Löw M, Haberer K, Alexous M, Koch N, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482

    Article  CAS  PubMed  Google Scholar 

  • Hofer N, Alexou M, Heerdt C, Löw M, Werner H, Matyssek R, Haberer K (2008) Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system. Environ Pollut 154:241–253

    Article  CAS  PubMed  Google Scholar 

  • Hu JL, Wang YG, Ying Q, Zhang HL (2014) Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos Environ 95:598–609

    Article  CAS  Google Scholar 

  • Hu J, Ying Q, Wang Y, Zhang H (2015) Characterizing multi-pollutant air pollution in China: comparison of three air quality indices. Environ Int 84:17–25

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Li X, Wang C, Xu Q, Wang W, Luo Y, Tao L, Gao Q, Guo J, Chen S, Cao K, Liu L, Gao N, Liu X, Yang K, Yan A, Guo X (2015) PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013–2014 in Beijing, China. PLoS ONE 10(11):e0141642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iglesias DJ, Calatayud Á, Barreno E, Primo-Millo E, Talon M (2006) Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiol Biochem 44(2–3):125–131

    Article  CAS  PubMed  Google Scholar 

  • Ihorst G, Frischer T, Horak F, Schumacher M, KoppM FJ, Mattes J, Kuehr J (2004) Long- and medium-term ozone effects on lung growth including a broad spectrum of exposure. Eur Respir J 23:292–299

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Pachauri RK, Allen MR, Barros VR Broome J, Cramer W, Christ R, Vuuren D. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Iqbal M, Abdin M, Mahmooduzzafar Z, Yunus M, Agrawal M (1996) Resistance mechanisms in plants against air pollution. In: Iqbal M, Yunus M (eds) Plant response to air pollution. Wiley, New York, pp 195–240

    Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam KR, Mulchi CL, Ali AA (2000) Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil. Glob Chang Biol 6:255–265

    Article  Google Scholar 

  • Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US. Atmos Environ 41:5452–5463

    Article  CAS  Google Scholar 

  • Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445

    Article  CAS  Google Scholar 

  • Jeong SJ (2013) The impact of air pollution on human health in Suwon city. Asian J Atmos Environ 7(4):227–233

    Article  CAS  Google Scholar 

  • Ji D, Wang Y, Wang L, Chen L, Hu B, Tang G et al (2012) Analysis of heavy pollution episodes in selected cities of northern China. Atmos Environ 50:338–348

    Article  CAS  Google Scholar 

  • Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels? Atmos Chem Phys 6:51–66

    Article  CAS  Google Scholar 

  • Jovanović M, Vučićević B, Turanjanin V, Živković M, Spasojević V (2014) Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 77:42–48

    Article  CAS  Google Scholar 

  • Kalimeri KK, Saraga DE, Lazaridis VD, Legkas NA, Missia DA, Tolis EI, Bartzis JG (2016) Indoor air quality investigation of the school environment and estimated health risks: two-season measurements in primary schools in Kozani. Greece Atmos Pollut Res 7(2016):1128–1142

    Article  Google Scholar 

  • Karlsson PE, Uddling J, Braum S, Broadmeadow M, Elvira S, Sánchez-Gimeno G, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2003) New critical levels for ozone impact on trees based on AOT40 and leaf cumulated uptake of ozone. In: Kalsson PE, Selldén G, Pleijel H (eds) Establishing ozone critical levels. IVL Swedish Environmental Research Institute, Gothenburg, pp 236–250

    Google Scholar 

  • Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober A, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Chang Biol 8:329–338

    Article  Google Scholar 

  • Kasibhatla P (1993) NO from sub-sonic aircraft emissions: a global three Satsumabayshi, and S. Horai, Behavior of secondary pollutants and dimensional model study. Geophys Res Lett 20:1707–1710

    Article  Google Scholar 

  • Kassomenos P, Vardoulakis S, Chaloulakou A, Grivas G, Borge R, Lumbreras J (2012) Levels, sources and seasonality of coarse particles (PM10-PM2.5) in three European capitals - implications for particulate pollution control. Atmos Environ 54:337–347

    Article  CAS  Google Scholar 

  • Katsouyanni K, Samet JM, Anderson HR, Atkinson R, Le AT, Medina S et al (2009) Air pollution and health: a European and north American approach (APHENA). Res Rep Health Eff Inst 142:5–90

    CAS  Google Scholar 

  • Kleinsorge EC, Erben M, Galan MG, Barison C, Gonsebatt ME, Simoniello MF (2011) Assessment of oxidative status and genotoxicity in photocopier operators: a pilot study. Biomarkers 16(8):642–648. https://doi.org/10.3109/1354750X.2011.620744

    Article  CAS  PubMed  Google Scholar 

  • Krupa SV, Manning WJ (1998) Atmospheric ozone: formation and effects on vegetation. Environ Poll 50:101–137

    Article  Google Scholar 

  • Kumar P, Khare M, Harrison RM, Bloss WJ, Lewis A, Coe H, Morawska L (2015) New directions: air pollution challenges for developing megacities like Delhi. Atmos Environ 122:657–661

    Article  CAS  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90(3):1163–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724

    Article  CAS  Google Scholar 

  • Langner J, Engardt M, Baklanov A, Christensen JH, Gauss M, Geels C, Hedegaard GB, Nuterman R, Simpson D, Soares J, Sofiev M, Wind P, Zakey A (2012) A multi-model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440

    Article  CAS  Google Scholar 

  • Larsen JB, Yang W, Vontiedemann A (1990) Effects of ozone on gas-exchange, frost-resistance, flushing and growth of different provenances of European silver fir (Abies Alba Mill). Eur J For Pathol 20:211–218

    Article  Google Scholar 

  • Lawrence MG, Crutzen PJ (1998) The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus 50B:263–289

    Article  CAS  Google Scholar 

  • Lee K, Parkhurst WJ, Xue J, Özkaynak H, Neuberg D, Spengler JD (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J Air Waste Manag Assoc 54:352–359

    Article  CAS  PubMed  Google Scholar 

  • Lefohn AS, Jackson W, Shadwick DS, Knudsen HP (1997) Effect of surface ozone exposures on vegetation grown in the Southern Appalachian Mountains: identification of possible areas of concern. Atmos Environ 31:1695–1708

    Article  CAS  Google Scholar 

  • Lefranc A, Pascal L, Larrieu S, Blanchard M, Wagner V, Declercq C (2009) Pollution atmosphérique et maladies cardiovasculaires: éléments apportés par le programme de surveillance air et santé. Archives des Maladies Professionnelles et de l'Environnement 70(3):339–345

    Article  Google Scholar 

  • Leitao L, Delacôte E, Dizengremel P, Le Thiec D, Biolley JP (2007) Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C 4 plant. Environ Poll 146:5–8

    Article  CAS  Google Scholar 

  • Lelieveld J, Hadjinicolaou P, Kostopoulou E, Giannakopoulos C, Pozzer A, Tanarhte M, Tyrlis E (2014) Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Reg Environ Chang 14:1937–1949

    Article  Google Scholar 

  • Levy JI, Chemerynski SM, Sarnat JA (2005) Ozone exposure and mortality an empiric Bayes Metaregression analysis. Epidemiology 16:458–468

    Article  PubMed  Google Scholar 

  • Li J, Lu K, Lv W, Li J, Zhong L, Ou Y, Chen D, Huang X, Zhang Y (2014) Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. J Environ Sci 26:23–26

    Article  CAS  Google Scholar 

  • Lu T, He X, Chen W, Yan K, Zhao T (2009) Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. B Environ Contam Tox 83:92–96

    Article  CAS  Google Scholar 

  • Lyng H, Gunnarsen L, Andersen HV (2015) The effect of ventilation on the indoor air concentration of PCB: an intervention study. Build Environ 94:305–312

    Article  Google Scholar 

  • Ma XY, Jia HL (2016) 2016. Particulate matter and gaseous pollutions in three megacities over China: situation and implication. Atmos Environ. 140:476–494

    Article  CAS  Google Scholar 

  • Ma Z, Xu J, Quan W, Zhang Z, Lin W, Xu X (2016) Significant increase of surface ozone at a rural site, North of Eastern China. Atmos Chem Phys 16:3969–3977

    Article  CAS  Google Scholar 

  • Manikandan P, Balachandar V, Sasikala K, Mohanadevi S, Lakshmankumar B (2010) DNA damage in workers occupationally exposed to photocopying machines in Coimbatore south India, using comet assay. Int J Toxicol 7:1–7

    Google Scholar 

  • Martins LD, Martins JA, Freitas ED et al (2010) Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions, a model-based study. Air Qual Atmos Health 3:29–39

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  PubMed  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL, Tignor M (eds) Climate change 2007: the physical basis contribution of working group I to fourth assessment report of IPCC on climate change. 2007. Cambridge University Press, Cambridge

    Google Scholar 

  • Melkonyan A, Wagner P (2013) Ozone and its projection in regard to climate change. Atmos Environ 67:287–295

    Article  CAS  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Joshi T, Nikhil, Gupta N, Gupta H, Kumar A (2015) Monitoring and analysis of PM10 concentration at Delhi Metro construction sites. Int J Environ Pollut 57(2):1

    Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    Article  CAS  Google Scholar 

  • Monks PS (2005) Gas phase chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  CAS  PubMed  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2008) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  Google Scholar 

  • Moussiopoulos N, Kalognomou E, Vlachokostas Ch (2004) Model intercomparison report. ETC/ACC SEC

    Google Scholar 

  • Mullins JT (2018) Ambient air pollution and human performance: contemporaneous and acclimatization effects of ozone exposure on athletic performance. Heath Econ. https://doi.org/10.1002/hec.3667

    Article  PubMed  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change, the physical science base, contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nagpure AS, Sharma K, Gurjar BR (2013) Traffic induced emission estimates and trends (2000–2005) in megacity Delhi, New Delhi, India. Urban Clim 4:61–73

    Article  Google Scholar 

  • Nagpure AS, Gurjar BR, Kumar V, Kumar P (2016) Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos Environ 127:118–124

    Article  CAS  Google Scholar 

  • Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J Geophys Res 107

    Google Scholar 

  • Nali C, Pucciariello C, Mills G, Lorenzini G (2005) On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach. Water Air Soil Pollut 164(1–4):137–153

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (1991) Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, DC, pp 103–134

    Google Scholar 

  • Nazaroff WW (2013) Exploring the consequences of climate change for indoor air quality. Environ Res Lett 8:1–20

    Article  CAS  Google Scholar 

  • Nishanth T, Praseed KM, Satheesh Kumar MK, Valsaraj KT (2012) Analysis of ground level O3 and NOx measured at Kannur. India J Earth Sci Climate Change 3:1–11

    Google Scholar 

  • Nuvolone D, Balzi D, Pepe P, Chini M, Scala D, Giovannini F, Cipriani F, Barchielli A (2013) Ozone short-term exposure and acute coronary events: a multicities study in Tuscany (Italy). Environ Res 126:17–23

    Article  CAS  PubMed  Google Scholar 

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2004) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  CAS  PubMed  Google Scholar 

  • Padu E, Kollist H, Tulva I, Oksanen E, Moldau H (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytol 165:131–142

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2010) Erratum to Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Tot Environ 408:2014–2024

    Article  CAS  Google Scholar 

  • Park SK, O’Neill MS, Vokonas PS, Sparrow D, Schwartz J (2005) Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect 113:304–309

    Article  PubMed  Google Scholar 

  • Parrish DD, Millet DB, Goldstein AH (2009) Increasing ozone in marine boundary layer inflow at the west coasts of North America and Europe. Atmos Chem Phys 9:1303–1323

    Article  CAS  Google Scholar 

  • Pattenden S, Armstrong B, Milojevic A, Heal MR, Chalabi Z, Doherty R et al (2010) Ozone, heat and mortality: acute effects in 15 British conurbations. Occup Environ Med 67(10):699–707

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    Article  CAS  Google Scholar 

  • Percy KE, Nosal M, Heilman W, Dann T, Sober J, Legge AH, Karnosky DF (2007) New exposure-based metric approach for evaluating O3 risk to North American aspen forests. Environ Pollut 147:554–566

    Article  CAS  PubMed  Google Scholar 

  • Peterson DL, Bowers D, Brace S (1999) Tropospheric ozone in the Nisqually River drainage, Mount Rainier National Park, Northwest. Science 73:241–254

    CAS  Google Scholar 

  • Pina JM, Moraes RM (2010) Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Environ Exp Bot 73:685–691

    CAS  Google Scholar 

  • Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Plazek A, Hura K, Rapacz H (2001) The influence of ozone fumigation on metabolic efficiency and plant resistance to fungal pathogens. J Applied Bot 75:8–13

    CAS  Google Scholar 

  • Pleijel H (2011) Reduced ozone by air filtration consistently improved grain yield in wheat. Environ Poll 159:897–902

    Article  CAS  Google Scholar 

  • Pui CH, Pei D, Campana D, Cheng C, Sandlund JT, Bowman WP et al (2014) A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia 28(12):2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Sci Tot Environ 407:679–691

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. Proceed Nat Acad Sci India B Biol Sci 82:241–257

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut R 21:1039–1053

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Choudhary KK, Agrawal SB, Emberson L, Büker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotox Environ Safe 112:29–38

    Article  CAS  Google Scholar 

  • Repo T, Leinonen I, Ryyppo A, Finer L (2004) The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiologia Plantarum 121:93–100

    Article  CAS  PubMed  Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol. 25:621–632

    Article  CAS  PubMed  Google Scholar 

  • Ro-Poulsen H, Mikkelsen TN, Hovmand MF, Hummelsehoj P, Jensen NO (1998) Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark. Chemosphere 36:669–674

    Article  CAS  Google Scholar 

  • Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. In: Science policy report 15/08. The Royal Society, London, pp 43–87

    Google Scholar 

  • Ryang SZ, Woo SY, Kwon SY, Kim SH, Lee SH, Kim KN, Lee DK (2009) Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica 47:19–25

    Article  CAS  Google Scholar 

  • Saavedra S, Rodríguez A, Taboada JJ, Souto JA, Casares JJ (2012) Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia. Sci Total Environ 441:97–110

    Article  CAS  PubMed  Google Scholar 

  • Sadanaga Y, Shibata S, Hamana M, Takenaka N, Bandow H (2008) Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos Environ 42:4708–4723

    Article  CAS  Google Scholar 

  • Saitanis CJ, Panagopoulous G, Dasopoulou V, Agathokleous E, Papatheohari Y (2015) Integrated assessment of ambient ozone phytotoxicity in Greece’s Tripolis Plateau. J Agr Meteorol 71:55–64

    Article  Google Scholar 

  • Sarkar A, Agrawal SB (2010a) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:283–302

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010b) Elevated ozone and modern cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of O3 on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe 115:101–111

    Article  CAS  Google Scholar 

  • Scebba F, Canaccini F, Castagna A, Bender J, Weigel HJ, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Pollut 142:540–548

    Article  CAS  PubMed  Google Scholar 

  • Schripp T, Langer S, Salthammer T (2012) Interaction of ozone with wooden building products, treated wood samples and exotic wood species. Atmos Environ 54:365–372

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley-Interscience Publication, New York, pp 1098–1099

    Google Scholar 

  • Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146:707–714

    Article  CAS  PubMed  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos Environ 38:4769–4778

    Article  CAS  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agri Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014a) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2014b) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosys Environ 199:26–33

    Article  CAS  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. DM Whitacre (Ed.) Rev Environ Cont Toxicol 233:129–184

    Google Scholar 

  • Song J, Lei W, Bei N, Zavala M, de Foy B, Volkamer R, Cardenas B, Zheng J, Zhang R, Molina LT (2010) Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign. Atmos Chem Phys 10:3827–3846

    Article  CAS  Google Scholar 

  • Song C, Wu L, Xie Y, He J, Chen X, Wang T, Lin Y, Jin T, Wang A, Liu Y, Dai Q, Liu B, Wang Y, Mao H (2017) Air pollution in China: status and spatiotemporal variations. Environ Pollut 227:334–347

    Article  CAS  PubMed  Google Scholar 

  • Stafoggia M, Forastiere F, Faustini A, Biggeri A, Bisanti L, Cadum E et al (2010) Susceptibility factors to ozone-related mortality: a population-based case-crossover analysis. Am J Respir Crit Care Med 182(3):376–384

    Article  PubMed  Google Scholar 

  • Stevenson DS, Young PJ, Naik V, Lamarque J-F, Shindell DT, Voulgarakis A, Skeie RB, Dalsoren SB, Myhre G, Berntsen TK, Folberth GA, Rumbold ST, Collins WJ, MacKenzie IA, Doherty RM, Zeng G, van Noije TPC, Strunk A, Bergmann D, Cameron-Smith P, Plummer DA, Strode SA, Horowitz L, Lee YH, Szopa S, Sudo K, Nagashima T, Josse B, Cionni I, Righi M, Eyring V, Conley A, Bowman KW, Wild O, Archibald A (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:3063–3085

    Article  CAS  Google Scholar 

  • Stjernberg A-CE, Skorokhod A, Paris JD, Elansky N, Nedelec P, Stohl A (2012) Low concentrations of near-surface ozone in Siberia. Tellus Ser B 64:1–13

    Google Scholar 

  • Stowell JD, Kim YM, Gao Y, Fu JS, Chang HH, Liu Y (2017) The impact of climate change and emissions control on future ozone levels: implications for human health. Environ Int 108:41–50

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Global Change Biol 19:2739–2752

    Article  Google Scholar 

  • Then C, Herbinger K, Luis VC, Heerdt C, Matyssek R, Wieser G (2009) Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation. Environ Pollut 157:392–395

    Article  CAS  PubMed  Google Scholar 

  • Toumainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affect birch (Betula pendula Roth) phenylpropanoid, polyamine and reactive oxygen detoxifying pathways at biochemical and gene expression levels. J Plant Physiol 148:179–188

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (2006) Air quality criteria for resistance and a possible metric. Atmos Environ 38:2323–2337

    Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (1980–2008) Average annual emissions 2009. In All criteria pollutants in MS excel. National Emissions Trend Data, Office of Air Quality planning and Standards

    Google Scholar 

  • US EPA (2017) Health effects of ozone pollution. Available online at: https://www.epa

  • UNECE (2010) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Convention on Long-range Transboundary Air Pollution. http://www.icpmapping.org

  • Utriainen J, Holopainen T (2001) Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree Physiol 21:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Vainonen JP, Kangasjärvi J (2014) Plant signalling in acute ozone exposure. Plant Cell Environ. https://doi.org/10.1111/pce.12273

    Article  CAS  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • Verma N, Lakhani A, Kumari KM (2017) High ozone episodes at a semi-urban site in India: photochemical generation and transport. Atmos Res 197:232–243

    Article  CAS  Google Scholar 

  • Volz A, Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the 19th century. Nature. 332:240–242

    Article  CAS  Google Scholar 

  • Vornanen-Winqvist C, Järvi K, Toomla S, Ahmed K, Andersson MA, Mikkola R (2018) Ventilation positive pressure intervention effect on indoor air quality in a school building with moisture problems. Int J Environ Res Public Health 15(2):pii: E230. https://doi.org/10.3390/ijerph15020230

    Article  CAS  Google Scholar 

  • Wahid A (2006) Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ 40:5342–5354

    Article  CAS  Google Scholar 

  • Wan WX, Xia YJ, Zhang HX, Wang J, Wang XK (2013) The ambient ozone pollution and foliar injury of the sensitive woody plants in Beijing exurban region. Acta Ecol Sin 33:109

    Article  Google Scholar 

  • Wang T, Wei XL, Ding AJ, Poon CN, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmos Chem Phys 9:6217–6227

    Article  CAS  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Liu G, Tang H (2013) Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agr Ecosyst Environ 165:39–49

    Article  CAS  Google Scholar 

  • Wang Y, Li L, Chen C, Huang C, Huang H, Feng J, Wang S, Wang H, Zhang G, Zhou M, Cheng P, Wu M, Sheng G, Fu J, Hu Y, Russell AG, Wumaer A (2014a) Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. J Geophys Res Atmos 119:1903–1914

    Article  CAS  Google Scholar 

  • Wang Y, Ying Q, Hu J, Zhang H (2014b) Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014. Environ Int 73:413–422

    Article  CAS  PubMed  Google Scholar 

  • Waring MS, Wells JR (2015) Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources. Atmos Environ 106:382–391

    Article  CAS  Google Scholar 

  • Wheida A, Nasser A, El Nazer M, Borbon A, Abo El Ata GA, Abdel Wahab M, Alfaro SC (2017) Tackling the mortality from long-term exposure to outdoor air pollution in megacities: Lessons from the Greater Cairo case study. Environ Res 160:223–231

    Article  PubMed  CAS  Google Scholar 

  • WHO (2006) Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2013a) Review of evidence on health aspects of air pollution – REVIHAAP project: technical report. Copenhagen, WHO Regional Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Finaltechnical-report.pdf. Accessed 13 Nov 2013

  • WHO (2013b) Health risks of air pollution in Europe – HRAPIE project: new emerging risks to health from air pollution – results from the survey of experts. Copenhagen, WHO Regional Office for Europe. http://www.euro.who.int/en/health-topics/environmentandhealth/air-quality/publications/2013/health-risks-of-air-pollution-in-europe-hrapieproject.-new-emerging-risks-to-health-from-air-pollution-results-from-the-survey-ofexperts. Accessed 13 Nov 2013

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol 15:396–424

    Article  Google Scholar 

  • Xie Y, Zhao B, Zhang L, Luo R (2015) 2015. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 20:141–149

    Article  CAS  Google Scholar 

  • Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys 8:215–243

    Article  Google Scholar 

  • Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa JI, Akimoto H (2006) Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the community multi-scale air quality model: what controls surface ozone levels over Japan? Atmos Environ 40:1856–1868

    Article  CAS  Google Scholar 

  • Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69:198–204

    Article  CAS  Google Scholar 

  • Yin DY, Zhao SP, Qu JJ (2017) Spatial and seasonal variations of gaseous and particulate matter pollutants in 31 provincial capital cities, China. Air Qual Atmos Health 10(3):359–370

    Article  CAS  Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8(2):369–387

    Article  CAS  Google Scholar 

  • Zhang R, LeiW TX, Hess P (2004) Industrial emissions cause extreme diurnal urban ozone variability. Proc Natl Acad Sci U S A 101:6346–6350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Feng Z, Wang X, Niu J (2012) Responses of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157

    Article  CAS  PubMed  Google Scholar 

  • Zhang HL, Wang YG, Hu JL, Ying Q, Hu XM (2015) Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ Res 140:242–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang HF, Wang ZH, Zhang WZ (2016) Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environ Pollut 216:559–567

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang Y, Zeng T (2009) East China plains: a “basin” of ozone pollution. Environ Sci Technol 43:1911–1915

    Article  CAS  PubMed  Google Scholar 

  • Zhao SP, Yu Y, Yin DY, He JJ, Liu N, Qu JJ, Xiao JH (2016) Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ Int 86:92–106

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Lyons T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38:403–411

    Article  CAS  Google Scholar 

  • Zhou T, Sun J, Yu H (2017) Temporal and spatial patterns of China’s main air pollutants: Years 2014 and 2015. Atmosphere 8(137):1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, P., Sonwani, S. (2019). Secondary Criteria Air Pollutants: Environmental Health Effects. In: Criteria Air Pollutants and their Impact on Environmental Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-9992-3_4

Download citation

Publish with us

Policies and ethics