Skip to main content

Advertisement

Log in

Abstract

Tropospheric ozone (O3) is the most important regional atmospheric pollutant causing risk to food production across the globe due to its phytotoxicity and prevalence over agricultural areas. Peak O3 concentrations have declined in Europe and North America due to reductions in precursors during the last decades, however, emissions of O3 precursors have increased in Asia. The current critical level of ozone is determined by the threshold for yield loss which is based on the seasonal sum of the external concentration above 40 ppb. In the present article, the impact of tropospheric O3 on crop photosynthesis, defense mechanism, growth, reproductive processes and yield of crop plants have been documented. O3 upon its entry into the leaf intercellular spaces rapidly forms reactive oxygen species and reacts with components of the leaf apoplast to initiate a complex set of responses that constitute variable countermeasures by antioxidative enzymes. Ozone affects photosynthetic process by influencing photosynthetic pigments, chlorophyll fluorescence kinetics and electron transport as well as carbon fixation in terms of decreased Rubisco activity and quantity. Translocation and allocation pattern of photosynthate also get influenced under O3, which affect reproductive processes and yield of crops. Plant species and cultivars exhibit a range of sensitivity to O3, which is identifiable in terms of biochemical, physiological, molecular and yield responses. Hence, understanding of cultivar sensitivity in context to O3 would be helpful in development of potential O3 biomarkers and O3 tolerant variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayshi K, Oanh OTR, Quadir QF, Wahid A (2009) A comparison of North-America and Asian exposure response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  2. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  3. Singh S, Agrawal SB, Singh P, Agrawal M (2010) Screening three cultivars of Vigna mungo L. against ozone by application of ethylenediurea (EDU). Ecotoxicol Environ Safety 73:1765–1775

    Article  PubMed  CAS  Google Scholar 

  4. Rai R, Agrawal M, Agrawal SB (2010) Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmos Environ 44:4272–4282

    Article  CAS  Google Scholar 

  5. Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exper Bot 69:328–337

    Article  CAS  Google Scholar 

  6. Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food security. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open air conditions suggests recent models may have overestimate future yields. Phil Trans R Soc 360:2011–2020

    Article  Google Scholar 

  7. Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Sci Tot Environ 407:679–691

    Article  CAS  Google Scholar 

  8. Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 29:4499–4514

    Article  Google Scholar 

  9. Middleton JT, Kendrick JB Jr, Schwalm HW (1950) Injury to herbaceous plants by smog or air pollution. Plt Dis Rep 34:245–252

    CAS  Google Scholar 

  10. Richards BL, Middleton JT, Hewitt WB (1958) Air pollution with reference to agronomic crops. J Agron 50:559–561

    Article  CAS  Google Scholar 

  11. Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of O3 on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584

    Article  PubMed  CAS  Google Scholar 

  12. Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedlings. J Proteome Res 7:2980–2998

    Article  PubMed  CAS  Google Scholar 

  13. Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    Article  PubMed  CAS  Google Scholar 

  14. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL, Tignor M (eds) Climate change 2007: the physical basis contribution of working group I to fourth assessment report of IPCC on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  15. Coyle M, Flower D, Ashmore MR (2003) New directions: implications of increasing tropospheric background ozone concentrations for vegetation. Atmos Environ 37:153–154

    Article  CAS  Google Scholar 

  16. US EPA (1980–2008) Average annual emissions all criteria pollutants in MS excel. USA national emissions inventory (NEI) air pollutant emissions trend data office of air quality planning and standards, 2009

  17. Lefohn AS, Shadwick D, Oltmans SJ (2008) Characterizing changes in surface ozone levels in the United States (1980–2005). Atmos Environ 42:8252–8262

    Article  CAS  Google Scholar 

  18. Lefohn AS, Shadwick D, Oltmans SJ (2010) Characterizing changes in surface ozone levels in the United States for 1980–2008 and 1994–2008. Atmos Environ 44:5199–5210

    Article  CAS  Google Scholar 

  19. Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  20. Monks PS (2005) Gas phase chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  PubMed  CAS  Google Scholar 

  21. Derwent RG, Simmonds PG, O’Doherty S, Stevenson DS, Collins WJ, Sanderson MG, Johnson CE, Dentener F, Cofala J, Mechler R, Amann M (2005) External influences on Europe’s air quality: methane, carbon monoxide and ozone from 1990 to 2030 at Mace Ireland. Atmos Environ 40:844–855

    Article  CAS  Google Scholar 

  22. Air pollution by ozone in Europe in summer Copenhagen, European Environment Agency, Denmark 2003

  23. Dentener F, Stevenson D, Cofala J, Mechler R, Amann M, Bergamaschi P, Raes F, Derwent R (2005) The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030. Atmos Chem Phys 5:1731–1755

    Article  CAS  Google Scholar 

  24. Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    Article  CAS  Google Scholar 

  25. Pandey J, Agrawal M (1992) Ozone: concentration variabilities in a seasonally dry tropical climate. Environ Int 18:515–520

    Article  CAS  Google Scholar 

  26. Varshney CK, Aggarwal M (1992) Ozone pollution in the urban atmosphere of Delhi. Atmos Environ 26:291–294

    Article  Google Scholar 

  27. Singh A, Sarin SM, Shanmugam P, Sharma N, Attri AK, Jain VK (1997) Ozone distribution in the urban environment of Delhi during winter months. Atmos Environ 31:3421–3427

    Article  CAS  Google Scholar 

  28. Khemani LT, Momin GA, Rao PSP, Vijaykumar R, Safai PD (1995) Study of surface ozone behaviour at urban and forested sites in India. Atmos Environ 29:2021–2024

    Article  CAS  Google Scholar 

  29. Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724

    Article  CAS  Google Scholar 

  30. Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi. India. Int J Remote Sens 26:3515–3524

    Article  Google Scholar 

  31. Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  32. Long SP, Naidu SL (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, West Sussex

    Google Scholar 

  33. Musselman RC, McCool PM, Lefohn AS (1994) Ozone descriptors for an air quality standard to protect vegetation. J Air Waste Manage Assoc 44:1383–1390

    CAS  Google Scholar 

  34. Taylor GE Jr, Tingey DT, Ratsch HC (1982) Ozone flux in Glycine max.L Merr. Sites of regulation and relationship to leaf injury. Oceologia 53:179–186

    Article  Google Scholar 

  35. Pleijel H, Danielsson H, Ojanperä K, De Temmerman L, Högy P, Badiani M, Karlsson PE (2004) Relationships between ozone exposure and yield loss in European wheat and potato. A comparison of concentration based and flux based exposure indices. Atmos Environ 38:2259–2269

    Article  CAS  Google Scholar 

  36. Feng Z, Pang J, Kobayashi K, Zhu J, Orts DR (2011) Differential resposnes in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biol 17:580–591

    Article  Google Scholar 

  37. Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant, Cell Environ 12:1–30

    Article  CAS  Google Scholar 

  38. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  39. Heath RL, Lefohn AS, Musselman RC (2009) Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose. Atmos Environ 43:2919–2928

    Article  CAS  Google Scholar 

  40. Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to changes? Environ Pollut 155:453–463

    Article  PubMed  CAS  Google Scholar 

  41. Dominy PJ, Heath RL (1985) Inhibition of the K+-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone. Plant Physiol 77:43–45

    Article  PubMed  CAS  Google Scholar 

  42. Robinson MF, Heath J, Mansfield TA (1998) Disturbances in stomatal behaviour caused by air pollutants. J Exp Bot 49:461–469

    Google Scholar 

  43. Melhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418

    Article  Google Scholar 

  44. Taylor GE Jr, Ross-Todd BM, Gunderson CA (1988) Action of ozone on foliar gas exchange in Glycine max L. Merr. A potential role for endogenous stress ethylene. New Phytol 11D:301–317

    Article  Google Scholar 

  45. Rao MV, Davis KR (2000) The physiology of ozone induced cell death. Planta 213:682–690

    Article  CAS  Google Scholar 

  46. Fiscus EL, Booker FL, Burkey KO (2005) Crop loss responses to ozone: uptake, mode of action, carbon assimilation and partitioning. PlantCell Environ 28:997–1011

    CAS  Google Scholar 

  47. Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone exposed plants. Plant Physiol Biochem 40:567–575

    Article  CAS  Google Scholar 

  48. Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Bio 52:407–436

    Article  CAS  Google Scholar 

  49. Tamoki M (2008) The role of phytohormone signaling in ozone- induced cell death in plants. Plant Signal Behav 3:166–174

    Article  Google Scholar 

  50. Kangasjarvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant, Cell Environ 28:1021–1036

    Article  CAS  Google Scholar 

  51. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  PubMed  CAS  Google Scholar 

  52. Turcsanyi E, Lyons T, Plochl M, Barnes J (2000) Does the ascorbate in the mesophyll cell walls form the first line of defense against ozone? Testing the concept using broad bean (Vicia faba L.). J Exper Bot 51:901–910

    Article  CAS  Google Scholar 

  53. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Bio 49:249–279

    Article  CAS  Google Scholar 

  54. Robinson JM, Britz SJ (2000) Tolerance of a field grown soybean cultivar to elevated ozone level is concurrent with higher leaflet ascorbic level, higher ascorbate-dehydroascorbate redox status, and long term photosynthetic productivity. Photosyn Res 64:77–87

    Article  CAS  Google Scholar 

  55. Burkey KO, Eason G, Fiscus EL (2003) Factors that affect leaf extracellular ascorbic acid content and redox status. Physiol Plantarum 117:51–57

    Article  CAS  Google Scholar 

  56. Feng J, Pang J, Nouchi I, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  PubMed  CAS  Google Scholar 

  57. Singh P, Agrawal M, Agrawal SB (2009) Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environ Pollut 157:871–880

    Article  PubMed  CAS  Google Scholar 

  58. Leitao L, Dizengremel P, Biolley JP (2008) Foliar CO2 fixation in bean (Phaseolus vulgaris L.) submitted to elevated ozone: distinct changes in Rubisco and PEPc activities in relation to pigment content. Ecotoxicol Environ Safety 69:531–540

    Article  PubMed  CAS  Google Scholar 

  59. Agrawal M, Nandi PK, Rao DN (1982) Effects of ozone and sulphur dioxide pollutants separately and in mixture on chlorophyll and carotenoid pigments of Oryza sativa L. Water Air Soil Pollut 18:449–454

    Article  CAS  Google Scholar 

  60. Sarkar A, Agrawal SB (2010) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:283–302

    Article  CAS  Google Scholar 

  61. Saitanis CJ, Riga-Karandinos AN, Karandinos MG (2001) Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere 42:945–953

    Article  PubMed  CAS  Google Scholar 

  62. Leitao L, Delacôte E, Dizengremel P, Thiec DL, Biolley J-P (2007) Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C4 plant. Environ Pollut 146:5–8

    Article  PubMed  CAS  Google Scholar 

  63. Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biol 14:46–59

    Google Scholar 

  64. Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    Article  PubMed  CAS  Google Scholar 

  65. Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Izuta T (2010) Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Environ Pollut 158:1763–1767

    Google Scholar 

  66. Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol 142:2696–2708

    Google Scholar 

  67. Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  68. Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Bio 14:1642–1650

    Article  Google Scholar 

  69. Agrawal GK, Rakwal R, Yonekura M, Akihiro K, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  PubMed  CAS  Google Scholar 

  70. Feng YW, Komatsu S, Furukawa T, Koshiba T, Koshiba T, Kohno Y (2008) Proteome analysis of proteins responsive to ambient and elevated ozone in rice seedlings. Agric Ecosyst Environ 125:255–265

    Article  CAS  Google Scholar 

  71. Degl’ Innocenti E, Vaccia C, Guidi L, Soldatini GF (2003) CO2 photo-assimilation and chlorophyll fluorescence in two clover species showing different response to O3. Plant Physiol Biochem 41:485–493

    Article  CAS  Google Scholar 

  72. Degl’Innocenti E, Guidi L, Soldatini GF (2007) Effects of elevated ozone on chlorophyll a fluorescence in symptomatic and asymptomatic leaves of two tomato genotypes. Biol Plant 51:313–321

    Article  Google Scholar 

  73. Guidi L, Degl’Innocenti E, Martinelli F, Piras M (2009) Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars. Environ Experi Bot 66:117–125

    Article  CAS  Google Scholar 

  74. Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316

    Article  CAS  Google Scholar 

  75. Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Experi Bot 60:11–19

    Article  CAS  Google Scholar 

  76. Flowers MD, Fiscus EL, Burkey KO, Booker FL (2007) B. Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exper Bot 61:190–198

    Article  CAS  Google Scholar 

  77. Ishii S, Marshall FM, Bell JNB (2004) Physiological and morphological responses of locally grown Malaysian rice cultivars (Oryza sativa L.) to different ozone concentrations. Water Air Soil Pollut 155:205–221

    Article  CAS  Google Scholar 

  78. Meyer U, Köllner B, Willenbrink J, Krause GHM (1997) Effects of ozone on agricultural crops in Germany. I. Different ambient ozone exposure regimes affect photosynthesis and assimilate allocation in spring wheat. New Phytol 136:645–652

    Article  CAS  Google Scholar 

  79. Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new varieties in Pakistan. Sci Tot Environ 371:304–313

    Article  CAS  Google Scholar 

  80. Castagna A, Nali C, Ciompi S, Lorenzini G, Soldatini GF, Ranieri A (2001) Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo L.) plants. New Phytol 152:223–229

    Article  CAS  Google Scholar 

  81. Singh E, Tiwari S, Agrawal M (2009) Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of global climate change. Plant Biol 11:101–108

    Article  PubMed  CAS  Google Scholar 

  82. Grantz DA, Farrar JF (2000) Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton. Aust J Plant Physiol 27:859–868

    CAS  Google Scholar 

  83. Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  PubMed  CAS  Google Scholar 

  84. Wahid A (2006) Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ 40:5342–5354

    Article  CAS  Google Scholar 

  85. Cooley DR, Manning WJ (1987) The impact of O3 on assimilate partitioning in plants: a review. Environ Pollut 47:95–113

    Article  PubMed  CAS  Google Scholar 

  86. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    Article  CAS  Google Scholar 

  87. Agrawal M (2005) Effects of air pollution on agriculture: an issue of national concern. Nat Acad Sci Let 28:93–106

    CAS  Google Scholar 

  88. Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    Article  CAS  Google Scholar 

  89. Feng ZZ, Yao FF, Chen Z, Wang XK, Zheng QW, Feng ZW (2007) Response of gas exchange and yield components of field-grown Triticum aestivum L. to elevated ozone in China. Photosynthetica 45:441–446

    Article  CAS  Google Scholar 

  90. Grandjean A, Fuhrer J (1989) Growth and leaf senescence in spring wheat Triticum aestivum grown at different ozone concentrations in open-top field chambers. Physiol Plant 77:389–394

    Article  CAS  Google Scholar 

  91. Pleijel H, Ojanperä K, Danielsson H, Slid E, Gelang J, Wallin G, Skärby L, Sèllden G (1997) Effects of ozone on leaf senescence in spring wheat-possible consequences for grain yield. Phyton 37:227–232

    CAS  Google Scholar 

  92. Gelang J, Pleijel H, Slid E, Danielsson H, Younis S, Sèllden G (2000) Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum L.) exposed to different concentrations to ozone. Physiol Plant 110:366–375

    Article  CAS  Google Scholar 

  93. Feder WA, Shrier R (1990) Combination of UV-B and ozone reduces pollen tube growth more than either stress alone. Environ Experi Bot 30:451–454

    Article  CAS  Google Scholar 

  94. Hormaza JI, Pinney K, Polito VS (1996) Correlation in the tolerance to ozone between sporophytes and male gametophytes of several fruit and tree nut species (Rosaceae). Sex Plant Reprod 9:44–48

    Google Scholar 

  95. Black VJ, Stewart CA, Roberts JA, Black CR (2007) Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants). New Phytol 176:150–163

    Article  PubMed  CAS  Google Scholar 

  96. Ollerenshaw JH, Lyons T (1999) Impacts of ozone on the growth and yield of field-grown winter wheat. Environ Pollut 106:67–72

    Article  PubMed  CAS  Google Scholar 

  97. Amundson RG, Raba RM, Schoettle AW, Reich B (1986) Response of soybean to low concentrations of ozone: II. Effects on growth, biomass allocation and flowering. J Environ Qual 15:161–167

    Article  CAS  Google Scholar 

  98. Oshima RJ, Braegelmann PK, Flagler RB, Teso RR (1979) The effects of ozone on the growth, yield, and partitioning of dry matter in cotton. J Environ Quality 8:474–479

    Article  CAS  Google Scholar 

  99. Tingey DT, Olysk DM, Herstorm AA, Lee EH (1993) Effects of ozone on crops. In: Mckee DJ (ed) Tropospheric ozone: human health and agriculture impacts. Lewis Publishers, Boca Raton, pp 175–206

    Google Scholar 

  100. Heagle AS, Philbeck RB, Knott WM (1979) Thresholds for injury, growth, yield loss caused by ozone on field corn hybrids. Phytopathology 69:21–26

    Article  Google Scholar 

  101. Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Climate Res 11:19–30

    Article  Google Scholar 

  102. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  103. Tonneijck AEG, van Dijk CJ (1997) Effects of ambient ozone on injury and yield of Phaseolus vulgaris at four rural sites in the Netherlands as assessed by using ethylenediurea (EDU). New Phytol 135:93–100

    Article  CAS  Google Scholar 

  104. Lawson T, Craigon J, Black CR, Colls JJ, Tulloch AM, Landon G (2001) Effects of elevated carbon dioxide and ozone on the growth and yield of potatoes (Solanum tuberosum L.) grown in open-top chambers. Environ Pollut 111:479–491

    Article  PubMed  CAS  Google Scholar 

  105. Grunhage L, Krause GHM, Kollner B, Bender J, Weigel HJ, Jagèr HJ, Guderian R (2001) A new flux-oriented concept to derive critical levels for ozone to protect vegetation. Environ Pollut 111:355–362

    Article  PubMed  CAS  Google Scholar 

  106. Emberson L, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  PubMed  CAS  Google Scholar 

  107. Pleijel H, Danielsson H, Ojanpera K, De Temmerman L, Hogy P, Badiani M, Karlsson PE (2002) Relationships between ozone exposure and yield loss in European wheat and flux based exposure indices. In: Karlsson PE, Sèllden G, Pleijel H (eds) UNECE Workshop Report. Swedish Environmental Research Institute, Sweden, pp 89–103

  108. Emberson LD, Ashmore MR, Simpson D, Tuovinen JP, Cambridge H (2001) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130:577–582

    Article  Google Scholar 

  109. Maggs R, Wahid A, Shamsi SRA, Ashmore MR (1995) Effects of ambient air pollution on wheat and rice yield in Pakistan. Water Air Soil Pollut 85:1311–1316

    Article  CAS  Google Scholar 

  110. Wahid A, Maggs R, Shamsi SRA, Bell JNB, Ashmore MR (1995) Air pollution and its impact on wheat yield in the Pakistan. Punjab. Environ Pollut 88:147–154

    Article  CAS  Google Scholar 

  111. Wahid A, Maggs R, Shamsi SRA, Bell JNB, Ashmore MR (1995) Effects of air pollution on rice yield in the Pakistan Punjab. Environ Pollut 90:323–329

    Article  PubMed  CAS  Google Scholar 

  112. Wahid A, Milne E, Shamsi SRA, Marshall FM, Ashmore MR (2001) Effects of oxidants on soybean growth and yield in the Pakistan Punjab. Environ Pollut 113:271–280

    Article  PubMed  CAS  Google Scholar 

  113. Agrawal M (1985) Plant factors as indicator of SO2 and O3 pollutants. Proceedings of the symposium on Biomonitoring State Environment, New Delhi

  114. Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  115. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT 40 based response functions and critical levels of ozone for agricultural and horticultural crops. Atoms Environ 41:2630–2643

    Article  CAS  Google Scholar 

  116. Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agri Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  117. Ariyaphanphitak W, Chidthaisong A, Sarobol E, Bashkin VN, Towprayoon S (2005) Effects of elevated ozone concentrations on Thai jasmine rice cultivars (Oryza sativa L.). Water Air Soil Pollut 167:179–200

    Article  CAS  Google Scholar 

  118. Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  PubMed  Google Scholar 

  119. Hayes F, Jones MLM, Mills G, Ashmore M (2007) Meat analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ Pollut 146:754–762

    Article  PubMed  CAS  Google Scholar 

  120. Manning WJ (2003) Detecting plant effects is necessary to give biological significance to ozone monitoring data and predictive ozone standards. Environ Pollut 126:375–379

    Article  PubMed  CAS  Google Scholar 

  121. Tiwari S, Agrawal M, Manning WJ (2005) Assessing the impact of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylenediurea (EDU). EnvironPollut 138:153–163

    CAS  Google Scholar 

  122. Blum O, Didyk N (2007) Study of ambient ozone phytotoxicity in Ukraine and ozone protective effect of some antioxidants. J Hazard Mat 149:598–602

    Article  CAS  Google Scholar 

  123. Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329

    Article  PubMed  CAS  Google Scholar 

  124. Singh S, Agrawal SB, Agrawal M (2009) Differential protection of ethylenediurea (EDU) against ozone for five cultivars of tropical wheat. EnvironPollut 157:2359–2367

    CAS  Google Scholar 

  125. Singh S, Agrawal SB (2011) Cultivar specific response of soybean (Glycine max L.) to ambient and elevated concentration to ozone under open top chambers. Water Air Soil Pollut 217:283–302

    Article  CAS  Google Scholar 

  126. Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J, Guo W, Kobayashi K (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biol. doi:10.1111/j.1365-2486.2011.02400.x

  127. Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 cultivars. Plant, Cell Environ 33:1569–1581

    Google Scholar 

  128. Hassan IA, Tewfik I (2006) CO2 photo assimilation, chlorophyll fluorescence, lipid peroxidation and yield in cotton (Gossypium hirustum L. cv Giza 65) in response to O3. World Rev Sci Techno Sust Dev 3:70–78

    Google Scholar 

  129. Booker FL, Burkey KO, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: I. Gas-exchange, biomass, and leaf chemistry. Crop Sci 47:1475–1487

    Article  CAS  Google Scholar 

  130. Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, Sun JZ, Jiang GM (2008) Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. J Exp Bot 59:951–963

    Article  PubMed  CAS  Google Scholar 

  131. Pleijel H, Skarby L, Ojanpera K, Sellden G (1992) Yield and quality of spring barley, Hordeum vulgare L., exposed to different concentrations of ozone in open top chambers. Agric Ecosyst Environ 38:21–29

    Article  CAS  Google Scholar 

  132. Fiscus EL, Reid CD, Miller JE, Heagle AS (1997) Elevated CO2 reduces O3 flux and O3-induced yield loss in soybeans: possible implications for elevated CO2 studies. J Exp Bot 48:307–313

    Article  CAS  Google Scholar 

  133. Maggs R, Ashmore MR (1998) Growth and yield responses of Pakistan rice (Oryza sativa) cultivars to O3 and NO2. Environ Pollut 88:147–154

    Google Scholar 

  134. Ojanperä K, Pätsikkä E, Yläranta T (1998) Effects of low ozone exposure of spring wheat on net CO2 uptake, Rubisco, leaf senescence and grain filling. New Phytol 138:451–460

    Article  Google Scholar 

  135. Meyer U, Kollner B, Willenbrink J, Krause GHM (2000) Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agric Ecosyst Environ 78:49–55

    Article  CAS  Google Scholar 

  136. Khan S, Soja G (2003) Yield responses of wheat to ozone exposure as modified by drought-induced differences in ozone uptake. Water Air Soil Pollut 147:299–315

    Article  CAS  Google Scholar 

  137. Feng Z, Jin M, Zhang F (2003) Effects of ground-level (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta. J Environ Sci 15:360–362

    CAS  Google Scholar 

  138. Ishii S, Marshall FM, Bell JNB, Abdullah AM (2004) Impact of ambient air pollution on locally grown rice cultivars (Oryza sativa L.) in Malaysia. Water Air Soil Pollut 154:187–201

    Article  CAS  Google Scholar 

  139. Huang H, Wang C, Bai Y, Wen M (2004) A diagnostic experimental study of the composite influence of increasing O3 and CO2 concentration on soybean. Chin J Atmos Sci 28:601–612

    Google Scholar 

  140. Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Sellden G (2006) Differential ozone sensitivity in an old and a modern Swedish wheat cultivar grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Experi Bot 56:63–71

    Article  CAS  Google Scholar 

  141. Shi G, Yang L, Wang Y, Kobayashi K, Zhu J, Tang H, Pan S, Chen T, Liu G, Wang Y (2009) Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open field conditions. Agric Ecosyst Environ 131:178–184

    Article  CAS  Google Scholar 

  142. Renaut J, Bohler S, Hausman JF, Hoffmann L, Ahsan K, Sergeant Y, Dizengremel P (2009) The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spectrom Rev 28:485–516

    Article  CAS  Google Scholar 

  143. Heck WW, Taylor OC, Tingey DT (1988) Assessment of crop loss from air pollutants. Elsevier Applied Science, London

    Book  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany for all the laboratory facilities and to the Department of Science and Technology, New Delhi for providing financial support to the work. Richa Rai is grateful to Council of Scientific and Industrial Research, New Delhi for awarding Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, R., Agrawal, M. Impact of Tropospheric Ozone on Crop Plants. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82, 241–257 (2012). https://doi.org/10.1007/s40011-012-0032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0032-2

Keywords

Navigation