Skip to main content

Criteria Air Pollutants: Chemistry, Sources and Sinks

  • Chapter
  • First Online:
Criteria Air Pollutants and their Impact on Environmental Health

Abstract

Ambient air pollution is the foremost reason for global death and disease. An estimated premature death globally is related to ambient air pollution, mainly from emphysema, obstructive bronchiolitis, lung cancer, heart disease, stroke, and severe respiratory problems in children. The criteria air pollutants include particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and lead (Pb). The present chapter provides a summary of the types of criteria air pollutants, their National Ambient Air Quality Standards and their emission sources. This chapter also explains their level distribution and chemistry, and the sink in the earth’s environment of these criteria pollutants is studied extensively. Description of global, regional emissions of criteria air pollutants, their contribution from different sectors, and efficiency of control strategies in developed and developing countries are also focused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham FF (1974) Homogeneous nucleation theory. Academic, New York. Air quality criteria for carbon monoxide. Washington, DC. US Environmental Protection Agency, Office of Research and Development, 1991 (publication no. EPA-600/B-90/045F)

    Google Scholar 

  • Altshuller AP (1983) Review: natural volatile organic substances and their effect on air quality in the United States. Atmos Environ 17(11):2131–2165

    Article  CAS  Google Scholar 

  • Aneja VP, Businger S, Li Z, Claiborn CS, Murthy A (1991) Ozone climatology at high elevations in the southern appalachians. J Geophys Res Atmos 96(D1):1007–1021

    Article  Google Scholar 

  • Aneja VP, Agarwal A, Roelle PA, Phillips SB, Tong Q, Watkins N, Yablonsky R (2001) Measurements and analysis of criteria pollutants in New Delhi, India. Environ Int 27(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Anisimov MA (2003) Nucleation: theory and experiment. Russ Chem Rev 72:591

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34(12–14):2063–2101

    Article  CAS  Google Scholar 

  • ATSDR (1998) Agency for toxic substances and disease registry. Toxicological profile for sulfur dioxide. US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Barry PSI (1981) Concentrations of lead in the tissues of children. Br J Ind Med 38:61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry PSI, Mossman DB (1970) Lead concentrations in human tissues. Br J Ind Med 27:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boubel RW, Fox DL, Turner DB, Stern AC (1994) Effects on materials and structures, fundamentals of air pollution, 3rd edn. Academic Press, New York

    Google Scholar 

  • Boutron CF et al (1991) Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353:153–156

    Article  CAS  Google Scholar 

  • Brook J, Zhang L, Franco D, Padro J (1999) Description and evaluation of a model of deposition velocities for routine estimates of air pollutant dry deposition over North America, Part II: review of past measurements and model results. Atmos Environ 33:5053–5070

    Article  CAS  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association. Circulation 121:2331–2378

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Gupta T, Tripathi SN (2016) Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation, composition, and evolution. Sci Total Environ 573:690–698

    Article  CAS  PubMed  Google Scholar 

  • Choudhary V, Rajput P, Singh DK, Singh AK, Gupta T (2018) Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain. Atmos Pollut Res 9(3):494–501

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Lowenthal DH, Hackney R, Magliano K, Lehrman D, Smith T (1999) Temporal variations of PM2. 5, PM10, and gaseous precursors during the 1995 integrated monitoring study in Central California. J Air Waste Manage Assoc 49(9):16–24

    Article  Google Scholar 

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P et al (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176

    Article  CAS  PubMed  Google Scholar 

  • Cleveland WS, Graedel TE, Kleiner B, Warner JL (1974) Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 186(4168):1037–1038

    Article  CAS  PubMed  Google Scholar 

  • Cooper, CD, Alley FC (1986) Air pollution control: a design approach. Prospect Heights, Ill. Waveland Press

    Google Scholar 

  • Crutzen PJ (1983) Atmospheric interactions in homogeneous gas reactions of C, N and S containing compounds. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. John Wiley, Chichester, pp 67–112

    Google Scholar 

  • Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus 43AB:136–151

    Article  Google Scholar 

  • Cullis CF, Hirschler MM (1989) Man’s emissions of carbon monoxide and hydrocarbons into the atmosphere. Atmos Environ 23:1195–1203

    Article  CAS  Google Scholar 

  • Delmas R, Serca D, Jambert C (1997) Global inventory of NO x sources. Nutr Cycl Agroecosyst 48(1–2):51–60

    Article  CAS  Google Scholar 

  • Delumyea R, Kalivretenos A (1987) Elemental carbon and lead content of fine particles from American and French cities of comparable size and industry, 1985. Atmos Environ 21:1643–1647

    Article  Google Scholar 

  • DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1994) Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation Number 11, JPL Publication, Report No. 94–26

    Google Scholar 

  • Dockery DW (2009) Heath effects of particulate air pollution. Ann Epidemiol 19:257–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehhalt DH, Drummond JW (1982) The tropospheric cycle of NOx. In: Georgii H-W, Jaeschke W (eds) Chemistry of unpolluted and polluted atmosphere. Reidel, Dordrecht, pp 219–251

    Chapter  Google Scholar 

  • Eldering A, Cass GRJ (1996) Geophys Res 101:19343–19369

    Article  CAS  Google Scholar 

  • Eldering A, Larson SM, Hall JR, Hussey KJ, Cass GR (1993) Environ Sci Technol 27:626–635

    Article  CAS  Google Scholar 

  • Energy Information Administration (US) (ed) (2012) Annual energy outlook 2012: with projections to 2035. Government Printing Office

    Google Scholar 

  • EPA (1996) Air quality criteria for particulate matter, EPA/600/P-95/001cF. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • EPA (2011) Our Nation’s Air – Status and Trends through 2010, edited by: EPA-454/R-12-001, Research Triangle Park, NC

    Google Scholar 

  • European Commission, and Joint Research Centre (JRC)/Netherlands Environmental Assessment (PBL) (2011) Emission Database for Global Atmospheric Research (EDGAR), release version 4.2 (http://edgar.jrc.ec.europa.eu)

  • Faloona I, Conley SA, Blomquist B, Clarke AD, Kapustin V, Howell S et al (2009) Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment. J Atmos Chem 63(1):13–32

    Article  CAS  Google Scholar 

  • Ferron GA, Karg E, Busch B, Heyder J (2005) Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties. Atmos Environ 39(2):343–352

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276(5315):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Fleagle RG, Businger JA (1963) Chapter 2: Properties of atmospheric gases. In: An introduction to atmospheric physics. Academic, New York, pp 21–22

    Google Scholar 

  • Fraquhar GD, Wetselaar R, Weir B (1983) Gaseous nitrogen losses from plants. Dev Plant Soil Sci 9:159–180

    Google Scholar 

  • Frey MM, Brough N, France JL, Anderson PS, Traulle O, King MD et al (2013) The diurnal variability of atmospheric nitrogen oxides (NO and NO 2) above the Antarctic Plateau driven by atmospheric stability and snow emissions. Atmos Chem Phys 13(6):3045–3062

    Article  CAS  Google Scholar 

  • Gao C, Yin H, Ai N, Huang Z (2009) Historical analysis of SO 2 pollution control policies in China. Environ Manag 43(3):447–457

    Article  Google Scholar 

  • Garland JA, Branson JR (1976) The mixing height and mass balance of SO2 in the atmosphere above Great Britain. Atmos Environ 10:353

    Article  CAS  Google Scholar 

  • Ghude SD, Kulkarni SH, Jena C, Pfister GG, Beig G, Fadnavis S, van der A RJ (2013) Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian subcontinent. J Geophys Res Atmos 118:1075–1089

    Article  CAS  Google Scholar 

  • Giorgi F, Chameides WL (1985) The rainout parameterization in a photochemical model. J Geophys Res Atmos 90(D5):7872–7880

    Article  CAS  Google Scholar 

  • Godish T (1991) Air quality. Lewis Publishers, Chelsea, MI

    Google Scholar 

  • Granier C, Bessagnet B, Bond T, D’Angiola A, van Der Gon HD, Frost GJ et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Chang 109(1–2):163

    Article  CAS  Google Scholar 

  • Gulson B, Mizon K, Korsch M, Taylor A (2016) Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead. Arch Toxicol 90(4):805–816

    Article  CAS  PubMed  Google Scholar 

  • Gysel M, Weingartner E, Baltensperger U (2002) Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Environ Sci Technol 36(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Haagen-Smit AJ, Wayne LG (1968) Chapter 6: Atmospheric reactions and scavenging processes. In: Stern AC (ed) Air pollution, vol I, 2nd edn. Academic, New York, p 181

    Google Scholar 

  • Haar GT (1975) Lead in the environment-origins, pathways and sinks. Environ Qual Saf Suppl 2:76–94

    CAS  PubMed  Google Scholar 

  • Hämeri K, Laaksonen A, Väkevä M, Suni T (2001) Hygroscopic growth of ultrafine sodium chloride particles. J Geophys Res Atmos 106(D18):20749–20757

    Article  Google Scholar 

  • Hauglustaine DA, Brasseur GP, Walters S, Rasch PJ, MĂ¼ller JF, Emmons LK, Carroll MA (1998) MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. J Geophys Res Atmos 103(D21):28291–28335

    Article  CAS  Google Scholar 

  • HazDat Xylene (2006) HazDat Database: ATSDR’s hazardous substance release and health effects database. Atlanta, GA: ATSDR. www.atsdr.cdc.gov/hazdat.html. July 10, 2006

  • Hilboll A, Richter A, Burrows JP (2013) Long-term Changes of Tropospheric NO2 over Megacities Derived from Multiple Satellite Instruments. Atmos Chem Phys 13:4145–4169

    Article  CAS  Google Scholar 

  • Hiller FC (1991) Health implications of hygroscopic particle growth in the human respiratory tract. J Aerosol Med 4(1):1–23

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology. properties, behavior, and measurement of airborne particles, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Hobbs PV, Bowdle DA, Radke LF (1985) Particles in the lower troposphere over the high plains of the United States, 1. size distributions, elemental compositions and morphologies. J Clim Appl Meteorol 24:1344–1356

    Article  Google Scholar 

  • Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 12:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntrieser H, Feigl C, Schlager H, Schröder F, Gerbig C, Van Velthoven P et al (2002) Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J Geophys Res Atmos 107(D11):ACH-5

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, New York

    Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Ito K, De Leon SF, Lippmann M (2005) Associations between ozone and daily mortality: analysis and meta-analysis. Epidemiology:446–457

    Google Scholar 

  • Jaenicke R (1993) Tropospheric aerosols. In: Hobbs PV (ed) Aerosol– cloud–climate interactions. Academic Press, San Diego, CA, pp 1–31

    Google Scholar 

  • Jang M, Kamens RM (2001) Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ Sci Technol 35(24):4758–4766

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Lee S, Kamens RM (2003) Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmos Environ 37(15):2125–2138

    Article  CAS  Google Scholar 

  • Jeffrie HE (1995) Photochemical air pollution. In: Singh HB (ed) Composition, chemistry, and climate of the atmosphere. Van Nostrand Reinhold, New York

    Google Scholar 

  • Jenkin ME, Clemitshaw KC (2000) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ 34(16):2499–2527

    Article  CAS  Google Scholar 

  • Johansson C (1987) Pine forest: a negligible sink for atmospheric NOx in rural Sweden. Tellus 39B:426–438

    Article  CAS  Google Scholar 

  • Johansson C (1989) Fluxes of NOx above soil and vegetation. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley, Chichester, pp 229–246

    Google Scholar 

  • Johansson C, Galbally IE (1984) Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl Environ Microbiol 47(6):1284–1289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaschiev D (2000) Nucleation: basic principles and application. Butterworth, Heinemann

    Google Scholar 

  • Kasibhatla P (1993) NO from sub-sonic aircraft emissions: A global three Satsumabayshi, and S. Horai, Behavior of secondary pollutants and dimensional model study. Geophys Res Lett 20:1707–1710

    Article  Google Scholar 

  • Kaul DS, Gupta T, Tripathi SN, Tare V, Collett JL (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45(17):7307–7313

    Article  CAS  PubMed  Google Scholar 

  • Khalil MAK, Rasmussen RA (1990) Global cycle of CO-trends and mass balance. Chemosphere 20:227–242

    Article  CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA (1995) The changing composition of the Earth’s atmosphere. In: Singh HB (ed) Composition, chemistry, and climate of the atmosphere. Van Nostrand Reinhold, New York, pp 51–87

    Google Scholar 

  • Kley D, Kleinmann M, Sanderman H, Krupa S (1999) Photochemical oxidants: state of the science. Environ Pollut 100(1–3):19–42

    Article  CAS  PubMed  Google Scholar 

  • Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8(1):014003

    Article  CAS  Google Scholar 

  • Klonecki A, Levy H II (1997) Tropospheric chemical ozone tendencies in CO-CH4-NOy-H2O system: their sensitivity to variations in environmental parameters and their application to global chemistry transport model studies. J Geophys Res 102(21):221–21,237

    Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    Article  CAS  PubMed  Google Scholar 

  • Krupa SV (1997) Air pollution, people, and plants: an introduction (No. 04; QH545. A3, K7.). APS Press, St. Paul, Minnesota, USA

    Google Scholar 

  • Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T et al (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13(21):11019–11058

    Article  CAS  Google Scholar 

  • Laaksonen A, Talanquer V, Oxtoby DW (1995) Nucleation: measurements, theory, and atmospheric applications. Annu Rev Phys Chem 46:189

    Article  Google Scholar 

  • Lamarque J-F, Brasseur GP, Hess PG, Muller J-F (1996) Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. J Geophys Res 101(22):955–22,968

    Google Scholar 

  • Lamsal LN, Martin RV, Padmanabhan A, Van Donkelaar A, Zhang Q, Sioris CE et al (2011) Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett 38(5)

    Article  CAS  Google Scholar 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, …, Rothenberg SJ (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence MG, Crutzen PJ (1998) The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus B: Chemical and Physical Meteorology 50(3):263–289

    Article  Google Scholar 

  • Leaitch WR, Bottenheim JW, Biesenthal TA, Li SM, Liu PSK, Asalian K, Dryfhout-Clark H, Hopper F, Brechtel F (1999) A case study of gas-toparticle conversion in an eastern Canadian forest. J Geophys Res-Atmos 104:8095–8111

    Article  CAS  Google Scholar 

  • Lee Y-N, Schwartz SE (1981) Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water. J Geophys Res 86:11971–11983

    Article  CAS  Google Scholar 

  • Lee DS, Kohler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31:1735–1749

    Article  CAS  Google Scholar 

  • Levy H (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 173(3992):141–143

    Article  CAS  PubMed  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin W, Xu X, Ge B, Liu X (2011) Gaseous pollutants in Beijing urban area during the heating period 2007–2008: variability, sources, meteorological, and chemical impacts. Atmos Chem Phys 11(15):8157–8170

    Article  CAS  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10:6311–6331

    Article  CAS  Google Scholar 

  • Mallik C, Lal S (2014) Seasonal characteristics of SO2. NO2, and CO emissions in and around the Indo-Gangetic Plain. Environ Monit Assess 186(2):1295–1310

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2017) The bioinorganic chemistry of lead in the context of its toxicity. In: Lead–its effects on environment and health. De Gruyter, Berlin, vol 17, pp 1–20

    Google Scholar 

  • Massling A, Stock M, Wiedensohler A (2005) Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles. Atmos Environ 39(21):3911–3922

    Article  CAS  Google Scholar 

  • Ministerium FĂ¼r Umwelt, Raumordnung and Landwirtschaft Des Landes Nw. Luftreinhaltung in Nordrhein-Westfalen (1989) Eine Erfolgsbilanz der Luftreinhalteplanung 1975–1988. Bonner Universitätsdruckerei, Bonn

    Google Scholar 

  • Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42(35):8113–8138

    Article  CAS  Google Scholar 

  • Murozumi M et al (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochem Acta 33:1247–1294

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (1991) Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, DC, pp 103–134

    Google Scholar 

  • Nevers ND (2000) Air pollution control engineering, seconded. McGraw-Hill Companies, Inc., New York, pp 571–573

    Google Scholar 

  • Nielsen O-K, Plejdrup M, Hjelgaard K, Nielsen M, Winther M, Mikkelsen MH, Albrektsen R, Fauser P, Hoffmann L, Gyldenkærne S (2013) Projection of SO2, NOx, NMVOC, NH3 and particle emissions −2012-2035. Aarhus University, DCE – Danish Centre for Environment and Energy, 151 pp. Technical Report from DCE – Danish Centre for Environment and Energy No. 81. Available at: www.dce2.au.dk/pub/SR81.pdf

  • Novelli PC, Masarie KA, Tans PP, Lang PM (1994) Recent changes in atmospheric carbon monoxide. Science 263:1587–1590

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  • Pandis SN, Russell LM, Seinfeld JH (1994) The relationship between DMS ĂŸux and CCN concentration in remote marine regions. J Geophys Res 99:16945–16957

    Article  CAS  Google Scholar 

  • Pandis SN, Wexler AS, Seinfeld JH (1995) Dynamics of tropospheric aerosols. J Phys Chem 99:9646–9659

    Article  CAS  Google Scholar 

  • Patterson C (1965) Contaminated and natural lead environments of man. Arch Environ Health 11:344–360

    Article  CAS  PubMed  Google Scholar 

  • Pilinis C, Pandis S, Seinfeld JHJ (1995) Geophys Res 100:18739–18754

    Article  Google Scholar 

  • Pinder RW, Strader R, Davidson CI, Adams PJ (2004) A temporally and spatially resolved ammonia emission inventory for dairy cows in the United States. Atmos Environ 38(23):3747–3756

    Article  CAS  Google Scholar 

  • Pope CA III, Dockery DW (1992) Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis 145(5):1123–1128

    Article  PubMed  Google Scholar 

  • Qin Y, Tonnesen GS, Wang Z (2004) Weekend/weekday differences of Ozone, NOx, CO, VOCs, PM10 and the light scatter during ozone season in Southern California. Atmos Environ 38:3069–3087

    Article  CAS  Google Scholar 

  • Rastogi N, Singh A, Sarin MM, Singh D (2016) Temporal variability of primary and secondary aerosols over northern India: impact of biomass burning emissions. Atmos Environ 125:396–403

    Article  CAS  Google Scholar 

  • Ray S, Kim KH (2014) The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmos Res 147:101–110

    Article  CAS  Google Scholar 

  • Reutter P, Su H, Trentmann J, Simmel M, Rose D, Gunthe SS et al (2009) Aerosol-and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos Chem Phys 9(18):7067–7080

    Article  CAS  Google Scholar 

  • Riahi K, GrĂ¼bler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935

    Article  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    Article  CAS  PubMed  Google Scholar 

  • Rogers HH, Campbell JC, Volk RJ (1979) Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206:333–335

    Article  CAS  PubMed  Google Scholar 

  • Rönkkö TJ, Jalava PI, Happo MS, Kasurinen S, Sippula O, Leskinen A, …, Hao L (2018) Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Sci Total Environ 639:1290–1310

    Article  CAS  Google Scholar 

  • Sakamoto M, Yoshimura A, Kosaka H, Hiraki T (2005) Study on weekend–weekday differences in ambient oxidant concentrations in hyogo prefecture. J Jpn Soc Atmos Environ 40:201–208

    CAS  Google Scholar 

  • Schnellen CG (1947) Onderzoekingen over de Methaangistung. Doctoral thesis, Technische Wetenschap de Delft, Rotterdam, Holland

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York. 1326 pp

    Google Scholar 

  • Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33(12):1821–1845

    Article  CAS  Google Scholar 

  • Smith SJ, Andres R, Conception E, Lurz J (2004) Historical sulfur dioxide emissions 1850–2000: Methods and results (No. PNNL-14537). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)

    Google Scholar 

  • Smith SJ, Aardenne JV, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11(3):1101–1116

    Article  CAS  Google Scholar 

  • Stephenson M (1949) Bacterial metabolism, 3rd edn. Longmans, Green and Co, New York, p 54–55, 95–96

    Google Scholar 

  • Strader R, Lurmann F, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33(29):4849–4863

    Article  CAS  Google Scholar 

  • Swietlicki E, Hansson HC, Hämeri K, Svenningsson B, Massling A, McFiggans G, …, Topping D (2008) Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus Ser B Chem Phys Meteorol 60(3):432–469

    Google Scholar 

  • Sze ND (1977) Anthropogenic CO emissions: implications for the atmospheric CO-OH-CH4 cycle. Science 195:673–675

    Article  CAS  PubMed  Google Scholar 

  • Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. For Ecol Manag 144(1–3):159–173

    Article  Google Scholar 

  • Tang IN (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J Geophys Res Atmos 101(D14):19245–19250

    Article  CAS  Google Scholar 

  • Thompson AM, Cicerone RJ (1986) Atmospheric CH4, CO and OH from 1860 to 1985. Nature 321:148–150

    Article  CAS  Google Scholar 

  • USEPA – United States Environmental Protection Agency (1990) Cancer risk from outdoor exposure to air toxics, Vol 1, Final report, USEPA, North Carolina, USA

    Google Scholar 

  • USEPA (1991) Evaluation of a remote sensor for mobile source CO emissions. Contract with Donald Stedman and Gary Bishop. CR-815778-01-0

    Google Scholar 

  • USEPA (1994) Guidance manual for the integrated exposure uptake biokinetic model for lead in children, EPA/540/R-93/081. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vallero DA (2014) Fundamentals of air pollution. Academic press

    Google Scholar 

  • Van Dingenen R, Raes F (1991) Determination of the condensation accommodation coe¦cient of sulfuric acid on water sulphuric acid aerosol. Aerosol Sci Technol 15:93–106

    Article  Google Scholar 

  • Vu TV, Delgado-Saborit JM, Harrison RM (2015) A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual Atmos Health 8(5):429–440

    Article  CAS  Google Scholar 

  • Wang C, Prinn RG (1998) Combined effects of anthropogenic emissions and resultant climatic changes on atmospheric OH, MIT Joint Program on the Science and Policy of Global Change, Report No. 34, April, 6 p.; submitted to Nature

    Google Scholar 

  • Wang Y, Logan JA, Jacob DJ (1998) Global simulation of tropospheric O-NO -hydrocarbon chemistry: 2. Model evaluation and global ozone budget. J Geophys Res Atmos 103(D9):10727–10755

    Article  CAS  Google Scholar 

  • Wang Y, Zhang QQ, He K, Zhang Q, Chai L (2013) Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys 13(5):2635–2652

    Article  CAS  Google Scholar 

  • Wells EM, Navas-Acien A, Herbstman JB, Apelberg BJ, Silbergeld EK, Caldwell KL, …, Goldman LR (2011) Low-level lead exposure and elevations in blood pressure during pregnancy. Environ Health Perspect 119(5):664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitby KT, Sverdrup GM (1980) California aerosols, their physical and chemical characteristics. In: Hidy GM, Mueller PK, Grosjean D, Appel BR, Wesolowski JJ (eds) The character and origins of smog aerosols. J. Wiley and Sons, New York, pp 477–517

    Google Scholar 

  • WHO (2016) WHO’s urban ambient air pollution database 2016. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/who-aap-database-may2016.xlsx

  • World Bank (1998) Meeting India’s future power needs: planning for environmentally sustainable development. Washington, DC

    Google Scholar 

  • World Resources Institute (1994) World resources 1994–95: a guide to the global environment. Oxford University Press, New York

    Book  Google Scholar 

  • Zhao B, Wang P, Ma JZ, Zhu S, Pozzer A, Li W (2012) A high-resolution emission inventory of primary pollutants for the Huabei region, China. Atmos Chem Phys 12(1):481–501

    Article  CAS  Google Scholar 

  • Zunckel M, Chiloane K, Sowden M, Otter L (2007) Biogenic volatile organic compounds: the state of knowledge in southern Africa and the challenges for air quality management. S Afr J Sci 103(3–4):107–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, P., Sonwani, S. (2019). Criteria Air Pollutants: Chemistry, Sources and Sinks. In: Criteria Air Pollutants and their Impact on Environmental Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-9992-3_2

Download citation

Publish with us

Policies and ethics