Skip to main content
Log in

Seasonal characteristics of SO2, NO2, and CO emissions in and around the Indo-Gangetic Plain

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Anthropogenic emissions of sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) exert significant influence on local and regional atmospheric chemistry. Temporal and spatial variability of these gases are investigated using surface measurements by the Central Pollution Control Board (India) during 2005–2009 over six urban locations in and around the Indo-Gangetic Plain (IGP) and supported using the satellite measurements of these gases. The stations chosen are Jodhpur (west of IGP), Delhi (central IGP), Kolkata and Durgapur (eastern IGP), Guwahati (east of IGP), and Nagpur (south of IGP). Among the stations studied, SO2 concentrations are found to be the highest over Kolkata megacity. Elevated levels of NO2 occur over the IGP stations of Durgapur, Kolkata, and Delhi. Columnar NO2 values are also found to be elevated over these regions during winter due to high surface concentrations while columnar SO2 values show a monsoon maximum. Elevated columnar CO over Guwahati during pre-monsoon are attributed to biomass burning. Statistically significant correlations between columnar NO2 and surface NO2 obtained for Delhi, Kolkata, and Durgapur along with very low SO2 to NO2 ratios (≤0.2) indicate fossil fuel combustion from mobile sources as major contributors to the ambient air over these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhay, K. S., & Mondal, G. C. (2008). Chemical characterization of wet precipitation events and deposition of pollutants in coal mining region, India. Journal of Atmospheric Chemistry, 59, 1–23.

    Article  Google Scholar 

  • Adhikary, B., Carmichael, G. R., Tang, Y., Leung, L. R., Qian, Y., Schauer, J. J., et al. (2007). Characterization of the seasonal cycle of south Asian aerosols: a regional-scale modeling analysis. Journal of Geophysical Research, 112, D22S22. doi:10.1029/2006JD008143.

    Article  Google Scholar 

  • Akimoto, H. (2003). Global air quality and pollution. Science, 302, 1716. doi:10.1126/science.1092666.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Agarwal, A., Roelle, P. A., Phillips, S. B., Tong, Q., Watkins, N., et al. (2001). Measurements and analysis of criteria pollutants in New Delhi, India. Environment International, 27, 35–42.

    Article  CAS  Google Scholar 

  • Badami, M. G. (2005). Transport and urban air pollution in India. Environtal Management, 36(2), 195–204.

    Article  Google Scholar 

  • Bank, A. D. (2008). Managing Asian cities: sustainable and inclusive urban solutions. Mandaluyong City: Asian Development Bank.

    Google Scholar 

  • Biswas, J., Upadhyay, E., Nayak, M., & Yadav, A. K. (2011). An analysis of ambient air quality conditions over Delhi, India from 2004 to 2009. Atmospheric Climate Science, 1, 214–224.

    Article  CAS  Google Scholar 

  • Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 109, D04311. doi:10.1029/2003JD003962.

    Article  Google Scholar 

  • Bond, D. W., Steigera, S., Zhang, R., Tie, X., & Orville, R. E. (2002). The importance of NO x production by lightning in the tropics. Atmospheric Environment, 36, 1509–1519. doi:10.1016/S1352-2310(01)00553-2.

    Article  CAS  Google Scholar 

  • Bouwman, A. F., Boumans, L. J. M., & Batjes, N. H. (2002). Modeling global annual N2O and NO missions from fertilized fields. Glob Biogeochem Cycles, 16(4), 1080.

    Google Scholar 

  • Center for International Earth Science Information Network (CIESIN), Columbia University; United Nations Food and Agriculture Programme (FAO); and Centro Internacional de Agricultura Tropical (CIAT) (2005) Gridded population of the world: future estimates (GPWFE). Palisades NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. available athttp://sedac.ciesin.columbia.edu/gpw.

  • Chakrabarty, R. K., Garro, M. A., Wilcox, E. M., & Moosmuller, H. (2012). Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River Valley. Geophysical Research Letters, 39, L09804. doi:10.1029/2012GL051148.

    Article  Google Scholar 

  • CPCB. (2003). Environmental management in selected industrial sectors: status and needs. New Delhi: Central Pollution Control Board, Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Crutzen, P. J. (1998). How the atmosphere keeps itself clean and how this is affected by human activities. Pure and Applied Chemistry, 70(7), 1319–1326.

    Article  CAS  Google Scholar 

  • Datta, A., Saud, T., Goel, A., Tiwari, S., Sharma, S. K., Saxena, M. K., et al. (2011). Variation of ambient SO2 over Delhi. Journal of Atmospheric Chemistry. doi:10.1007/s10874-011-9185-2.

    Google Scholar 

  • Delmas, R., & Servant, J. (1998). The atmospheric sulfur cycle in the tropics. In H. Rodhe & R. Herrera (Eds.), Acidification in tropical countries (pp. 43–70). Chichester: SCOPE: Wiley.

    Google Scholar 

  • Faloona, I. (2009). Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmospheric Environment, 43, 2841–2854.

    Article  CAS  Google Scholar 

  • Garg, A., Shukla, P. R., Bhattacharya, S., & Dadhwal, V. K. (2001). Sub-region (district) and sector level SO2 and NO x emissions for India: assessment of inventories and mitigation flexibility. Atmospheric Environment, 35, 703–713.

    Article  CAS  Google Scholar 

  • Garg, A., Shukla, P. R., & Kapshe, M. (2006). The sectoral trends of multigas emissions inventory of India. Atmospheric Environment, 40, 4608–4620.

    Article  CAS  Google Scholar 

  • Ghude, S. D., Kulkarni, P. S., Kulkarni, S. H., Fadnavis, S., & Van Der, A. R. J. (2011). Temporal variation of urban NO x concentration in India during the past decade as observed from space. International Journal of Remote Sensing, 32(3), 849–861.

    Article  Google Scholar 

  • Goyal, P., & Sidhartha, A. (2002). Effect of winds on SO2 and SPM concentrations in Delhi. Atmospheric Environment, 36, 2925–2930.

    Article  CAS  Google Scholar 

  • Guttikunda, S. K., & Calori, G. (2013). A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmospheric Environment, 67, 101–111.

    Article  CAS  Google Scholar 

  • Guttikunda, S. K., & Gurjar, B. R. (2012). Role of meteorology in seasonality of air pollution in megacity Delhi, India. Environmental Monitoring and Assessment, 184, 3199–3211.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Perry, R. (1986). Handbook of air pollution analysis (2nd ed.). New York: Chapman Hall.

    Book  Google Scholar 

  • Hettige, H., Mani, M., & Wheeler, D. (1997). Industrial pollution in economic development: Kuznets revisited. Washington: Development Research Group, The World Bank.

    Google Scholar 

  • Hidy, G. M. (1994). Atmospheric sulfur and nitrogen oxides: Eastern North American Source-receptor Relationships. San Diego: Academic. ISBN 0123472555.

    Google Scholar 

  • International Energy Agency. (2010). Energy statistics of non-OECD countries. Paris: International Energy Agency.

    Google Scholar 

  • IPCC. (2007). Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M (pp. 153–171). Cambridge: Miller HL. Cambridge Univ. Press.

    Google Scholar 

  • IS 5182 Part 2 (2001) Methods for measurement of air pollution—part 2: sulphur dioxide. https://law.resource.org/pub/in/bis/S02/is.5182.02.2001.pdf.

  • Jacob, M. B., & Hochheiser, S. (1958). Continuous sampling and ultra-micro determination of nitrogen dioxide in air. Analytical Chemistry, 30, 426.

    Google Scholar 

  • Kandlikar, M. (2007). Air pollution at a hotspot location in Delhi: detecting trends, seasonal cycles and oscillations. Atmospheric Environment, 41, 5934–5947. doi:10.1016/j.atmosenv.2007.03.044.

    Article  CAS  Google Scholar 

  • Krotkov, N. A., Simon, A. C., Krueger, A. J., Bhartia, P. K., & Yang, K. (2006). Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing, 44(5).

  • Lu, Z., Zhang, Q., & Streets, D. G. (2011). Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 11, 9839–9864. doi:10.5194/acp-11-9839-2011.

    Article  CAS  Google Scholar 

  • Mallik, C., Venkataramani, S., & Lal, S. (2012). Study of a high SO2 event observed over an urban site in western India. Asia-Pacific Journal of Atmospheric Sciences, 48(2), 171–180. doi:10.1007/s13143-012-0017-3.

    Article  Google Scholar 

  • Mallik, C., Lal, S., Naja, M., Chand, D., Venkataramani, S., Joshi, H., et al. (2013). Enhanced SO2 concentrations observed over Northern India: role of long-range transport. International Journal of Remote Sensing, 34(8), 2749–2762. doi:10.1080/01431161.2012.750773.

    Article  Google Scholar 

  • Manktelow, P. T., Mann, G. W., Carslaw, K. S., Spracklen, D. V., & Chipperfield, M. P. (2007). Regional and global trends in sulfate aerosol since the 1980s. Geophysical Research Letters, 34(14), L14803. doi:10.1029/2006gl028668.

    Article  Google Scholar 

  • Meng, Z. Y., Xu, X. B., Wang, T., et al. (2010). Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007–2008. Atmospheric Environment, 44(21–22), 2625–2631.

    Article  CAS  Google Scholar 

  • Middey, A., & Chaudhuri, S. (2012). The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environmental Science and Pollution Research. doi:10.1007/s11356-012-1219-z.

    Google Scholar 

  • NAAQS report (2011) Reference methods for manual sampling and analyses in NAAQS Monitoring & Analysis Guidelines Volume-III. Central Pollution Control Board. http://www.cpcb.nic.in.

  • Nandi, P. K., & Gorain, G. C. (2010). Effect of traffic pollution on health of the people at Durgapur (India). Journal of Environmental Science & Engineering, 52(2), 167–172. PubMed PMID: 21114127.

    CAS  Google Scholar 

  • Rai, A., Ghosh, S., & Chakraborty, S. (2010). Wet scavenging of SO2 emissions around India's largest lignite based power plant. Advances in Geosciences, 25, 65–70.

    Article  Google Scholar 

  • Ramchandran, S., Kedia, S., & Srivastava, R. (2012). Aerosol optical depth trends over different regions of India. Atmospheric Environment, 49, 338–347.

    Article  Google Scholar 

  • Road transport yearbook. (2011). Road Transport Year Book (2007–2009) Volume- I Transport Research Wing. New Delhi: Ministry of Road Transport & Highways, Government of India.

    Google Scholar 

  • Roth, M., Emmanuel, R., Ichinose, T., & Salmond, J. (2011). ICUC-7 Urban Climate Special Issue. International Journal of Climatology, 31(2), 159–161.

    Article  Google Scholar 

  • Seinfeld, J., & Pandis, S. (2006). Atmospheric chemistry and physics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Sheel, V., Lal, S., Richter, A., & Burrows, J. P. (2010). Comparison of satellite observed tropospheric NO2 over India with model simulations. Atmospheric Environment, 44, 3314–3321.

    Article  CAS  Google Scholar 

  • Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., & He, D. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 108(D21), 8809. doi:10.1029/2002JD003093D.

    Article  Google Scholar 

  • Tasdemir, Y., Cindoruk, S. S., & Esen, F. (2005). Monitoring of criteria air pollutants in Bursa, Turkey. Environmental Monitoring and Assessment, 110(1–3), 227–241.

    Article  CAS  Google Scholar 

  • TERI (2010) Air quality assessment, emission inventory and source apportionment study for Bangalore City: final report, New Delhi. The Energy and Resources Institute. Project Report No. 2004EE28 pp 186.

  • Tsai, I. C., Chen, J. P., Lin, P. Y., Wang, W. C., & Isaksen, I. S. A. (2010). Sulfur cycle and sulfate radiative forcing simulated from a coupled global climate-chemistry model. Atmospheric Chemistry and Physics, 10, 3693–3709.

    Article  CAS  Google Scholar 

  • US EPA (1982) Reference method for the determination of sulfur dioxide in the atmosphere (pararosaniline method). Manual Reference Method. 40 CFR Part 50, Appendix A.

  • Warneck, P. (1988). Chemistry of the natural atmosphere. San Diego: Academic Press.

  • WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen, dioxide and sulfur dioxide. Global update http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf.

Download references

Acknowledgments

We are thankful to CPCB (Govt. of India) for measurement and archival of SO2 and NO2 data. We thank NASA GES DISC for providing easy access through Giovanni online data system; OMI and MOPITT science teams for data developments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallik, C., Lal, S. Seasonal characteristics of SO2, NO2, and CO emissions in and around the Indo-Gangetic Plain. Environ Monit Assess 186, 1295–1310 (2014). https://doi.org/10.1007/s10661-013-3458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3458-y

Keywords

Navigation