Skip to main content

Proteases of Parasitic Helminths: Their Metabolic Role in Establishment of Infection in the Host

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

Proteases catalyze hydrolysis of peptide bonds in proteins and play an important role in the survival of living organisms, encoded by about 2% of the whole genome in all kind of organisms. Mostly they are nonspecific, while some are highly specific toward a peptide bond. Generally, proteases are grouped into different clan, family, and type, depending on kinds of reaction they catalyze, mechanism of catalysis, and their molecular structure and homology. Proteases control many biological processes in living organisms including helminths. There are about 1828 sequences that pertain to 25 genera of helminth parasites. In this chapter, we have discussed various types of proteases found in helminth parasites, like aspartic-, cysteine-, metallo-, and serine proteases, and their possible role in these parasites and their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rawlings ND, Salvesen GS (Eds.) (2012) Handbook of proteolytic enzymes (Vol. 1) Academic press, Cambridge

    Google Scholar 

  2. Barrett AJ, Tolle DP, Rawlings ND et al (2003) Managing peptidases in the genomic era. Biol Chem 384:873–882

    Article  CAS  PubMed  Google Scholar 

  3. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and diseases. J Biol Chem 283:30433–30437

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bertenshaw GP, Norcum MT, Bond JS et al (2003) Structure of homo- and hetero-oligomeric meprin metalloproteases. Dimers, tetramers, and high molecular mass multimers. J Biol Chem 278:2522–2532

    Article  CAS  PubMed  Google Scholar 

  5. Rawlings ND, Barrett AJ, Bateman A et al (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    Article  CAS  PubMed  Google Scholar 

  6. Hartley BS (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72

    Article  CAS  PubMed  Google Scholar 

  7. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. López-Otín C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    Article  PubMed  Google Scholar 

  9. Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724

    Article  CAS  PubMed  Google Scholar 

  10. Sauer RT, Bolon DN, Burton BM et al (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Siegel RM (2006) Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6:308–317

    Article  CAS  PubMed  Google Scholar 

  12. Oikonomopoulou K, Hansen KK, Saifeddine M et al (2006) Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biol Chem 387:677–685

    CAS  PubMed  Google Scholar 

  13. Urban S (2006) Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev 20:3054–3068

    Article  CAS  PubMed  Google Scholar 

  14. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mariño G, Uría JA, Puente XS et al (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278:3671–3678

    Article  PubMed  Google Scholar 

  16. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  CAS  PubMed  Google Scholar 

  17. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  18. Yong Y, Yun JW, Ya NC et al (2015) Serine proteases of parasitic helminths. Korean J Parasitol 53:1–11

    Article  Google Scholar 

  19. Saeki K, Ozaki K, Kobayashi T et al (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103:501–508

    Article  CAS  PubMed  Google Scholar 

  20. McKerrow JH, Caffrey C, Kelly B et al (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536

    Article  CAS  PubMed  Google Scholar 

  21. Williamson AL, Brindley PJ, Abbenante G et al (2002) Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. FASEB J 16:1458–1460

    CAS  PubMed  Google Scholar 

  22. Rebello KM, Siqueira CR, Ribeiro EL et al (2012) Proteolytic activity in the adult and larval stages of the human roundworm parasite Angiostrongylus costaricensis. Mem Inst Oswaldo Cruz 107:752–759

    Article  CAS  PubMed  Google Scholar 

  23. Bethony J, Brooker S, Albonico M et al (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  PubMed  Google Scholar 

  24. Loukas A, Bethony J, Brooker S et al (2006) Hookworm vaccines: past, present, and future. Lancet Infect Dis 6:733–741

    Article  PubMed  Google Scholar 

  25. Athauda SB, Nomura H, Inoue H et al (2003) Two distinct types of aspartic proteases in the filarial parasite Brugia malayi: Molecular cloning and tissue distribution. Biomed Res 24:269–276

    Article  CAS  Google Scholar 

  26. Suttiprapa S, Mulvenna J, Huong NT et al (2009) Ov-APR-1, an aspartic protease from the carcinogenic liver fluke, Opisthorchis viverrini: functional expression, immunolocalization and subsite specificity. Int J Biochem Cell Biol 41:1148–1156

    Article  CAS  PubMed  Google Scholar 

  27. Koehler JW, Morales ME, Shelby BD et al (2007) Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner. Mem Inst Oswaldo Cruz 102:83–85

    Article  CAS  PubMed  Google Scholar 

  28. Shompole S, Jasmer DP (2001) Cathepsin B-like cysteine proteases confer intestinal cysteine protease activity in Haemonchus contortus. J Biol Chem 276:2928–2934

    Article  CAS  PubMed  Google Scholar 

  29. Baig S, Damian RT, Peterson DS (2002) A novel cathepsin B active site motif is shared by helminth bloodfeeders. Exp Parasitol 101:83–89

    Article  CAS  PubMed  Google Scholar 

  30. Choi YJ, Ghedin E, Berriman M et al (2011) A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm Brugia malayi. PLoS Negl Trop Dis 5:e1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Qin W, Wei H et al (2011) Characterization of cathepsin B proteinase (AcCP-2) in eggs and larvae stages of hookworm Ancylostoma caninum. Exp Parasitol 129:215–220

    Article  CAS  PubMed  Google Scholar 

  32. Ranjit N, Zhan B, Stenzel DJ et al (2008) A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. Mol Biochem Parasitol 160:90–99

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Zheng H, Chen Y et al (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345–351

    Article  CAS  PubMed Central  Google Scholar 

  34. Cho PY, Lee MJ, Kim TI et al (2006) Expressed sequence tag analysis of adult Clonorchis sinensis, the Chinese liver fluke. Parasitol Res 99:602–608

    Article  PubMed  Google Scholar 

  35. Cho PY, Kim TI, Whang SM et al (2008) Gene expression profile of Clonorchis sinensis metacercariae. Parasitol Res 102:277–282

    Article  PubMed  Google Scholar 

  36. Li S, Chung YB, Chung BS et al (2004) The involvement of the cysteine proteases of Clonorchis sinensis metacrcariae in excystment. Parasitol Res 93:36–40

    Article  PubMed  Google Scholar 

  37. Kim TI, Na BK, Hong SJ (2009) Functional genes and proteins of Clonorchis sinensis. Korean J Parasitol 47:S59–S68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Chen W, Huang Y et al (2011) The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 12:R107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cancela M, Ruétalo N, Dell’Oca N et al (2010) Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica. BMC Genom 11:227

    Article  Google Scholar 

  40. McVeigh P, Maule AG, Dalton JP et al (2012) Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect 14:301–310

    Article  CAS  PubMed  Google Scholar 

  41. Sripa J, Laha T, To J et al (2010) Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: regulation of cathepsin F activation by autocatalysis and trans-processing by cathepsin B. Cell Microbiol 12:781–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Na BK, Kim SH, Lee EG et al (2006) Critical roles for excretory-secretory cysteine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae. Cell Microbiol 8:1034–1046

    Article  CAS  PubMed  Google Scholar 

  43. Sako Y, Nakaya K, Ito A (2011) Echinococcus multilocularis: identification and functional characterization of cathepsin B-like peptidases from metacestode. Exp Parasitol 127:693–701

    Article  CAS  PubMed  Google Scholar 

  44. Sako Y, Yamasaki H, Nakaya K et al (2007) Cloning and characterization of cathepsin L-like peptidases of Echinococcus multilocularis metacestodes. Mol Biochem Parasitol 154:181–189

    Article  CAS  PubMed  Google Scholar 

  45. Baig S, Damian RT, Molinari JL et al (2005) Purification and characterization of a metacestode cysteine proteinase from Taenia solium involved in the breakdown of human IgG. Parasitology 131:411–416

    Article  CAS  PubMed  Google Scholar 

  46. Zimic M, Pajuelo M, Rueda D et al (2009) Utility of a protein fraction with cathepsin L-Like activity purified from cysticercus fluid of Taenia solium in the diagnosis of human cysticercosis. Am J Trop Med Hyg 80:964–970

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu LN, Cui J, Zhang X et al (2013) Analysis of structures, functions, and epitopes of cysteine protease from Spirometra erinaceieuropaei spargana. Biomed Res Int 2013:198250

    PubMed  PubMed Central  Google Scholar 

  48. Lai SC, Jiang ST, Chen KM et al (2005) Matrix metalloproteinases activity demonstrated in the infective stage of the nematodes, Angiostrongylus cantonensis. Parasitol Res 97:466–471

    Article  CAS  PubMed  Google Scholar 

  49. Williamson AL, Lustigman S, Oksov Y et al (2006) Ancylostoma caninum MTP-1, an Astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun 74:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mendez S, Zhan B, Goud G et al (2005) Effect of combining the larval antigens Ancylostoma secreted protein 2 (ASP-2) and metalloprotease 1 (MTP-1) in protecting hamsters against hookworm infection and disease caused by Ancylostoma ceylanicum. Vaccine 23:3123–3130

    Article  CAS  PubMed  Google Scholar 

  51. Pokharel DR, Rai R, Kumar P et al (2006) Tissue localization of collagenase and leucine aminopeptidase in the bovine filarial parasite Setaria cervi. Filaria J 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hasnain SZ, McGuckin MA, Grencis RK et al (2012) Serine protease(s) secreted by the nematode Trichuris muris degrade the mucus barrier. PLoS Negl Trop Dis 6:e1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Toubarro D, Lucena-Robles M, Nascimento G et al (2009) An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39:1319–1330

    Article  CAS  PubMed  Google Scholar 

  54. Toubarro D, Lucena-Robles M, Nascimento G et al (2010) Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J Biol Chem 285:30666–30675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Todorova VK (2000) Proteolytic enzymes secreted by larval stage of the parasitic nematode Trichinella spiralis. Folia Parasitol (Praha) 47:141–145

    Article  CAS  Google Scholar 

  56. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  CAS  PubMed  Google Scholar 

  57. Brindley PJ, Mitreva M, Ghedin E et al (2009) Helminth genomics: the implications for human health. PLoS Negl Trop Dis 3:e538

    Article  PubMed  PubMed Central  Google Scholar 

  58. Holroyd N, Sanchez-Flores A (2012) Producing parasitic helminth reference and draft genomes at the Wellcome Trust Sanger Institute. Parasite Immunol 34:100–107

    Article  CAS  PubMed  Google Scholar 

  59. Williamson AL, Lecchi P, Turk BE et al (2004) A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. J Biol Chem 279:35950–35957

    Article  CAS  PubMed  Google Scholar 

  60. Mulvenna J, Sripa B, Brindley PJ et al (2010) The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini. Proteomics 10:1063–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hewitson JP, Maizels RM (2014) Vaccination against helminth parasite infections. Expert Rev Vaccines 13:473–487

    Article  CAS  PubMed  Google Scholar 

  62. Wang S, Wei W, Luo X et al (2015) Comparative genomic analysis of aspartic proteases in eight parasitic platyhelminths: insights into functions and evolution. Gene 559:52–61

    Article  CAS  PubMed  Google Scholar 

  63. Hu FY, Zhao JH, Hu XC et al (2009) Bioinformatics analysis of the full-length cathepsin D-like aspartic protease gene from Clonorchis sinensis [J]. J Univ South China (Medical Edition) 1

    Google Scholar 

  64. Vermeire JJ, Lantz LD, Caffrey CR et al (2012) Cure of hookworm infection with a cysteine protease inhibitor. PLoS Negl Trop Dis 6:e1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qu ZG, Ma XT, Li WH et al (2015) Molecular characterization of a cathepsin F-like protease in Trichinella spiralis. Parasit Vectors 8:1–10

    Article  CAS  Google Scholar 

  66. Foth BJ, Tsai IJ, Reid AJ et al (2014) Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. Nat Genet 46:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan HB, Lou ZZ, Li L et al (2014) Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium. BMC Genom 15:1

    Google Scholar 

  68. Shareef PA, Abidi SM (2014) Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae). Parasitol Res 113:65–71

    Article  PubMed  Google Scholar 

  69. Chen W, Wang X, Lv X et al (2014) Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 113:3409–3418

    Article  PubMed  Google Scholar 

  70. Sajid M, McKerrow JH, Hansell E et al (2003) Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol 131:65–75

    Article  CAS  PubMed  Google Scholar 

  71. Skelly PJ, Shoemaker CB (2001) Schistosoma mansoni proteases Sm31 (cathepsin B) and Sm32 (legumain) are expressed in the cecum and protonephridia of cercariae. J Parasitol 87(5):1218–1221

    Article  CAS  PubMed  Google Scholar 

  72. Figueiredo BC, Ricci ND, de Assis NR et al (2015) Kicking in the guts: Schistosoma mansoni digestive tract proteins are potential candidates for vaccine development. Front Immunol 6:22

    Article  PubMed  PubMed Central  Google Scholar 

  73. Murkin AS, Moynihan MM (2014) Transition-state-guided drug design for treatment of parasitic neglected tropical diseases. Curr Med Chem 21:1781–1793

    Article  CAS  PubMed  Google Scholar 

  74. Fonseca NC, da Cruz LF, da Silva Villela F et al (2015) Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob Agents Chemother 59:2666–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones BD, Tochowicz A, Tang Y et al (2015) Synthesis and evaluation of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 against cruzain. ACS Med Chem Lett 7:77–82

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kang JM, Ju HL, Ju JW et al (2012) Comparative biochemical and functional properties of two leucine aminopeptidases of Clonorchis sinensis. Mol Biochem Parasitol 182:17–26

    Article  CAS  PubMed  Google Scholar 

  77. Zheng M, Hu K, Liu W et al (2013) Proteomic analysis of different period excretory secretory products from Clonorchis sinensis adult worms: molecular characterization, immunolocalization, and serological reactivity of two excretory secretory antigens—methionine aminopeptidase 2 and acid phosphatase. Parasitol Res 112:1287–1297

    Article  PubMed  Google Scholar 

  78. Liu S, Cai P, Piao X et al (2014) Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets. PLoS Comput Biol 10:e1003856

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bruschi F, Pinto B (2013) The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens 2:105–129

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ondrovics M, Silbermayr K, Mitreva M et al (2013) Proteomic analysis of Oesophagostomum dentatum (Nematoda) during larval transition, and the effects of hydrolase inhibitors on development. PLoS ONE 8:e63955

    Article  PubMed  PubMed Central  Google Scholar 

  81. Adisakwattana P, Nuamtanong S, Yenchitsomanus PT et al (2012) Degradation of human matrix metalloprotease-9 by secretory metalloproteases of Angiostrongylus cantonensis infective stage. Southeast Asian J Trop Med Public Health 43:1105–1113

    CAS  PubMed  Google Scholar 

  82. Greaves D, Coggle S, Pollard C et al (2013) Strongyloides stercoralis infection. BMJ 347:f4610

    Article  PubMed  Google Scholar 

  83. Ros-Moreno RM, Vázquez-López C, Giménez-Pardo C et al (2000) A study of proteases throughout the life cycle of Trichinella spiralis. Folia Parasitol (Praha) 47:49–54

    Article  CAS  Google Scholar 

  84. Wang B, Wang ZQ, Jin J, Ren HJ, Liu LN, Cui J (2013) Cloning, expression and characterization of a Trichinella spiralis serine protease gene encoding a 35.5 kDa protein. Exp Parasitol 134:148–154

    Article  CAS  PubMed  Google Scholar 

  85. Morris SR, Sakanari JA (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J Biol Chem 269:27650–27656

    CAS  PubMed  Google Scholar 

  86. Poole CB, Jin J, McReynolds LA et al (2003) Cloning and biochemical characterization of blisterase, a subtilisin-like convertase from the filarial parasite, Onchocerca volvulus. J Biol Chem 278:36183–36190

    Article  CAS  PubMed  Google Scholar 

  87. Kong Y, Chung YB, Cho SY et al (1994) Characterization of three neutral proteases of Spirometra mansoni plerocercoid. Parasitology 108:359–368

    Article  CAS  PubMed  Google Scholar 

  88. Lorenzo C, Salinas G, Brugnini A et al (2003) Echinococcus granulosus antigen 5 is closely related to proteases of the trypsin family. Biochem J 369:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rueda A, Sifuentes C, Gilman RH et al (2011) TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis. Mol Biochem Parasitol 180:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carmona C, McGonigle S, Dowd AJ et al (1994) A dipeptidylpeptidase secreted by Fasciola hepatica. Parasitology 109:113–118

    Article  CAS  PubMed  Google Scholar 

  91. Mohamed SA, Fahmy AS, Mohamed TM et al (2005) Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult. Comp Biochem Physiol B: Biochem Mol Biol 142:192–200

    Article  Google Scholar 

  92. Dvořák J, Mashiyama ST, Braschi S et al (2008) Differential use of protease families for invasion by schistosome cercariae. Biochimie 90:345–358

    Article  PubMed  Google Scholar 

  93. Young ND, Jex AR, Li B et al (2012) Whole-genome sequence of Schistosoma haematobium. Nat Genet 44:221–225

    Article  CAS  PubMed  Google Scholar 

  94. Ingram JR, Rafi SB, Eroy-Reveles AA et al (2012) Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl Trop Dis 6:e1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aslam A, Quinn P, McIntosh RS et al (2008) Proteases from Schistosoma mansoni cercariae cleaves IgE at solvent exposed interdomain regions. Mol Immunol 45:567–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank all the workers in the field of protease research in helminths. We also apology to the authors if some of their works were not accommodated in this compilation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyadhar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tandon, V., Das, B., Kumar, S. (2017). Proteases of Parasitic Helminths: Their Metabolic Role in Establishment of Infection in the Host. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_12

Download citation

Publish with us

Policies and ethics