Skip to main content

Steady State Fluorescence Spectroscopy for Medical Diagnosis

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Light can react with tissue in different ways and provide information for identifying the physiological state of tissue or detecting the presence of disease. The light used to probe tissue does so in a non-intrusive manner and typically uses very low levels of light far below the requirements for therapeutic applications. The use of fiber optics simplifies the delivery and collection of this light in a minimally invasive manner. Since tissue response is virtually instantaneous, the results are obtained in real-time and the use of data processing techniques and multi-variate statistical analysis allows for automated detection and therefore provides an objective estimation of the tissue state. These then form the fundamental basis for the application of optical techniques for the detection of tissue physiology as well as pathology. These distinct advantages have encouraged many researchers to pursue the development of the different optical interactions for biological and medical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krafft C and Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectrosc. Int. J., 20(5–6):195–218 (2006).

    Google Scholar 

  2. Wolf M, Ferrari M, and Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt., 12(6):062104 (2007).

    Article  ADS  Google Scholar 

  3. Hamaoka T, McCully KK, Quaresima V, Yamamoto K, and Chance B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J. Biomed. Opt., 12(6):062105 (2007).

    Article  ADS  Google Scholar 

  4. Mourant JR and Bigio IJ. Elastic scattering spectroscopy and diffuse reflectance. In: T Vo Dinh (ed) Biomedical photonics handbook. CRC, Boca Raton, FL, pp. 29.21–29.19 (2003).

    Google Scholar 

  5. Zonios G and Dimou A. Modeling diffuse reflectance from semi-infinite turbid media: Application to the study of skin optical properties. Opt. Express, 14(19):8661–8674 (2006).

    Article  ADS  Google Scholar 

  6. Lin WC, Toms SA, Jansen ED, and Mahadevan-Jansen A. Intraoperative application of optical spectroscopy in the presence of blood. J. Sel. Top. Quant., 7(6):996–1003 (2001).

    Article  Google Scholar 

  7. Ferraro JR, Nakamoto K, and Brown CW. Introductory Raman spectroscopy. 2nd ed., Academic, Amsterdam, Boston (2003).

    Google Scholar 

  8. Mahadevan-Jansen A. Raman spectroscopy: From benchtop to bedside. In: T Vo Dinh (ed) Biomedical photonics handbook, CRC, Boca Raton, FL, pp. 30.31–30.27 (2003).

    Google Scholar 

  9. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed., Springer, New York (2006).

    Google Scholar 

  10. Mishra AK. Photoluminescence spectroscopy. In: T Pradeep (ed) Advances in physical chemistry. Allied, Mumbai, pp. 195–214 (1999).

    Google Scholar 

  11. Fotinos N, Campo MA, Popowycz F, Gurny R, and Lange N. 5-aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives. Photochem. Photobiol., 82(4):994–1015 (2006).

    Article  Google Scholar 

  12. Allison RR and Sibata CH. Photodiagnosis for cutaneous malignancy: A brief clinical and technical review. Photodiagn. Photodyn., 5(4):247–250 (2008).

    Article  Google Scholar 

  13. Jichlinski P, Guillou L, Karlsen SJ, Malmstrom PU, Jocham D, Brennhovd B, Johansson E, Gartner T, Lange N, van den Bergh H, and Leisinger HJ. Hexyl aminolevulinate fluorescence cystoscopy: A new diagnostic tool for the photodiagnosis of superficial bladder cancer – A multicenter study. J. Urol., 170(1):226–229 (2003).

    Article  Google Scholar 

  14. Kelty CJ, Brown NJ, Reed MWR, and Ackroyd R. The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem. Photobiol. Sci., 1(3):158–168 (2002).

    Article  Google Scholar 

  15. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 5(3):161–171 (2005).

    Article  Google Scholar 

  16. Pope-Harman A, Cheng MMC, Robertson F, Sakamoto J, and Ferrari M. Biomedical nanotechnology for cancer. Med. Clin. North Am., 91(5):899–927 (2007).

    Article  Google Scholar 

  17. Jayagopal A, Russ PK, and Haselton FR. Surface engineering of quantum dots for in vivo vascular Imaging. Bioconjug. Chem., 18(5):1424–1433 (2007).

    Article  Google Scholar 

  18. Drbohlavova J, Adam V, Kizek R, and Hubalek J. Quantum dots – characterization, preparation and usage in biological systems. Int. J. Mol. Sci., 10(2):656–673 (2009).

    Article  Google Scholar 

  19. Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, and Feld MS. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt., 13(2):024012 (2008).

    Article  ADS  Google Scholar 

  20. Zhu CF, Palmer GM, Breslin TM, Harter J, and Ramanujam N. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: A Monte-Carlo-model-based approach. J. Biomed. Opt., 13(3):034015 (2008).

    Article  ADS  Google Scholar 

  21. Muller MG, Georgakoudi I, Zhang QG, Wu J, and Feld MS. Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl. Opt., 40(25):4633–4646 (2001).

    Article  ADS  Google Scholar 

  22. Wu J, Feld MS, and Rava RP. Analytical model for extracting intrinsic fluorescence in turbid media. Appl. Opt., 32(19):3585–3595 (1993).

    Article  ADS  Google Scholar 

  23. Gardner CM, Jacques SL, and Welch AJ. Fluorescence spectroscopy of tissue: Recovery of intrinsic fluorescence from measured fluorescence. Appl. Opt., 35(10):1780–1792 (1996).

    Article  ADS  Google Scholar 

  24. Zhadin NN and Alfano RR. Correction of the internal absorption effect in fluorescence emission spectra from absorbing and highly scattering media: theory and experiment. J. Biomed. Opt., 3(2):171–186 (1998).

    Article  ADS  Google Scholar 

  25. Utzinger U and Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt., 8(1):121–147 (2003).

    Article  ADS  Google Scholar 

  26. Zhu CF, Palmer GM, Breslin TM, Xu FS, and Ramanujam N. Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer. J. Biomed. Opt., 10(2):024032 (2005).

    Article  ADS  Google Scholar 

  27. Nieman LT, Jakovljevic M, and Sokolov K. Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues. Opt. Express, 17(4):2780–2796 (2009).

    Article  ADS  Google Scholar 

  28. Schwarz RA, Gao W, Daye D, Williams MD, Richards-Kortum R, and Gillenwater AM. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl. Opt., 47(6):825–834 (2008).

    Article  ADS  Google Scholar 

  29. Glenar DA, Samuelson RE, Pearl JC, Bjoraker GL, and Blaney D. Spectral imaging of martian water ice clouds and their diurnal behavior during the 1999 aphelion season (L-s=130 degrees). Icarus, 161(2):297–318 (2003).

    Article  ADS  Google Scholar 

  30. Kim EE, Choi YW, Yang HS, Kang MS, Jeong SK, Yang SU, Kim ED, Lee JH, Rasheed AAA, Nasir HM, and Rosdi MRM. A high-resolution multi-spectral imaging system for small satellites. Acta Astronaut., 52(9–12):813–818 (2003).

    Article  ADS  Google Scholar 

  31. Miskey CL and Bruhweiler FC. STIS spectral imagery of the ob stars in NGC 604. I. Description of the extraction technique for a crowded stellar field. Astron. J., 125(6):3071–3081 (2003).

    Article  ADS  Google Scholar 

  32. Galand M, Lummerzheim D, Stephan AW, Bush BC, and Chakrabarti S. Electron and proton aurora observed spectroscopically in the far ultraviolet. J. Geophys. Res.-Space Phys., 107(A7): SIA4.1–SIA4.4 (2002).

    Google Scholar 

  33. Kerekes JP and Baum JE. Spectral imaging system analytical model for subpixel object detection. IEEE Trans. Geosci. Remote Sensing, 40(5):1088–1101 (2002).

    Article  ADS  Google Scholar 

  34. White SN, Chave AD, Reynolds GT, and Van Dover CL. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett., 29(15):34.1–34.4 (2002).

    Article  Google Scholar 

  35. Kulcke A, Gurschler C, Spock G, Leitner R, and Kraft M. On-line classification of synthetic polymers using near infrared spectral imaging. J. Near Infrared Spectrosc., 11(1):71–81 (2003).

    Article  ADS  Google Scholar 

  36. Howard J, Carraro L, Puiatti ME, Sattin F, Scarin P, Valisa M, Zaniol B, Konig R, and Chung J. Coherence-imaging approach to time-resolved charge-exchange recombination spectroscopy in high-temperature plasma. Rev. Sci. Instrum., 74(3):2060–2063 (2003).

    Article  ADS  Google Scholar 

  37. Demers DR, Schroch PM, Radke RJ, Anderson JK, Craig D, and Den Hartog DJ. Spectroscopic ion beam imaging for investigations into magnetic field mapping of a plasma. Rev. Sci. Instrum., 74(3):2103–2106 (2003).

    Article  ADS  Google Scholar 

  38. Slovak ML, Zhang FY, Tcheurekdjian L, Bobadilla D, Bedell V, Arber DA, Persons DL, Sosman JA, and Murata-Collins JL. Targeting multiple genetic aberrations in isolated tumor cells by spectral fluorescence in situ hybridization. Cancer Detect. Prev., 26(3):171–179 (2002).

    Article  Google Scholar 

  39. Levenson RM. Spectral imaging and pathology: Seeing more. Lab. Med., 35(4):244–252 (2004).

    Google Scholar 

  40. Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, and Reid T. Spectral karyotyping analysis of human and mouse chromosomes Nat. protoc., 1(6):3129–3142 (2006).

    Google Scholar 

  41. Weier HUG, Munne S, Lersch RA, Hsieh HB, Smida J, Chen XN, Korenberg JR, Pedersen RA, and Fung J. Towards a full karyotype screening of interphase cells: ‘FISH and chip’ technology. Mol. Cell. Endocrinol., 183:S41–S45 (2001).

    Article  Google Scholar 

  42. Maiti D, Sennoune S, and Martinez-Zaguilan R. Proton gradients in human breast cancer cells determined by confocal, multiphoton, and spectral imaging microscopy. FASEB J., 17(4):A467–A467 (2003).

    Google Scholar 

  43. Papadakis AN, Stathopoulos E, Delides G, Berberides K, Nikiforidis G, and Balas C. A novel spectral microscope system: Application in quantitative pathology. IEEE Trans. Biomed. Eng., 50(2):207–217 (2003).

    Article  Google Scholar 

  44. Synytsya A, Kral V, Synytsya A, Volka K, and Sessler JL. In vitro interaction of macrocyclic photosensitizers with intact mitochondria: A spectroscopic study. Biochimica Et Biophysica Acta-General Subjects, 1620(1–3):85–96 (2003).

    Article  Google Scholar 

  45. Greenbaum L, Schwartz D, and Malik Z. Spectrally resolved microscopy of GFP trafficking. J. Histochem. Cytochem., 50(9):1205–1212 (2002).

    Google Scholar 

  46. Haraguchi T, Shimi T, Koujin T, Hashiguchi N, and Hiraoka Y. Spectral imaging fluorescence microscopy. Genes Cells 7(9):881–887 (2002).

    Article  Google Scholar 

  47. Qu JNY, Chang HP, and Xiong SM. Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis. J. Opt. Soc. Am. a-Opt. Image Sci. Vision, 19(9):1823–1831 (2002).

    Article  ADS  Google Scholar 

  48. Ramanujam N, Chen JX, Gossage K, Richards-Kortum R, and Chance B. Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner. IEEE Trans. Biomed. Eng., 48(9):1034–1041 (2001).

    Article  Google Scholar 

  49. Lazarev VV, Roth RA, Kazakevich Y, and Hang J. Detection of premalignant oral lesions in hamsters with an endoscopic fluorescence imaging system. Cancer, 85(7):1421–1429 (1999).

    Article  Google Scholar 

  50. Andersson-Engels S, Canti G, Cubeddu R, Eker C, af Klinteberg C, Pifferi A, Svanberg K, Svanberg S, Taroni P, Valentini G, and Wang I. Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of nasal cell carcinomas of the skin. Lasers Surg. Med., 26(1):76–82 (2000).

    Article  Google Scholar 

  51. Hewett J, Nadeau V, Ferguson J, Moseley H, Ibbotson S, Allen JW, Sibbett W, and Padgett M. The application of a compact multispectral imaging system with integrated excitation source to in vivo monitoring of fluorescence during topical photodynamic therapy of superficial skin cancers. Photochem. Photobiol., 73(3):278–282 (2001).

    Article  Google Scholar 

  52. Nadeau RG and Groner W. The role of a new noninvasive imaging technology in the diagnosis of anemia. J. Nutr., 131(5):1610s–1614s (2001).

    Google Scholar 

  53. Thomale UW, Schaser KD, Unterberg AW, and Stover JF. Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury. J. Neurosci. Methods 108(1):85–90 (2001).

    Article  Google Scholar 

  54. Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, and Garner HR. Hyperspectral imaging: A novel approach for microscopic analysis. Cytometry, 43(4):239–247 (2001).

    Article  Google Scholar 

  55. Schlucker S, Schaeberle MD, Huffman SW, and Levin IW. Raman microspectroscopy: A comparison of point, line, and wide-field imaging methodologies. Anal. Chem., 75(16):4312–4318 (2003).

    Article  Google Scholar 

  56. Otto C and Greve J. Progress in instrumentation for Raman micro-spectroscopy and Raman imaging for cellular biophysics. Internet J. Vibrational Spectrosc., 2(3) (1998).

    Google Scholar 

  57. Khait O, Smirnov S, and Tran CD. Multispectral imaging microscope with millisecond time resolution. Anal. Chem., 73(4):732–739 (2001).

    Article  Google Scholar 

  58. Tran CD. Development and analytical applications of multispectral imaging techniques: An overview. Fresenius J. Anal. Chem., 369(3–4):313–319 (2001).

    Article  Google Scholar 

  59. Balas C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans. Biomed. Eng., 48(1):96–104 (2001).

    Article  MathSciNet  Google Scholar 

  60. Garini Y, Katzir N, Cabib D, Buckwald RA, Soenksen DG, and Malik Z. Spectral bio-imaging. In: XF Wang and B Herman (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York (1996).

    Google Scholar 

  61. Qu JNY, Huang ZJ, and Hua JW. Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media. Appl. Opt., 39(19):3344–3356 (2000).

    Article  ADS  Google Scholar 

  62. Churmakov DY, Meglinski IV, and Greenhalgh DA. Influence of refractive index matching on the photon diffuse reflectance. Phys. Med. Biol., 47(23):4271–4285 (2002).

    Article  Google Scholar 

  63. Wu J, Partovi F, Field MS, and Rava RP. Diffuse reflectance from turbid media – an analytical model of photon migration. Appl. Opt., 32(7):1115–1121 (1993).

    Article  ADS  Google Scholar 

  64. Pfefer TJ, Matchette LS, Bennett CL, Gall JA, Wilke JN, Durkin AJ, and Ediger MN. Reflectance-based determination of optical properties in highly attenuating tissue. J. Biomed. Opt., 8(2):206–215 (2003).

    Article  ADS  Google Scholar 

  65. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, and Depeursinge C. In vivo local determination of tissue optical properties: Applications to human brain. Appl. Opt., 38(22):4939–4950 (1999).

    Article  ADS  Google Scholar 

  66. Bargo PR, Prahl SA, and Jacques SL. Optical properties effects upon the collection efficiency of optical fibers in different probe configurations. J. Sel. Top. Quant., 9(2):314–321 (2003).

    Article  Google Scholar 

  67. Bargo PR, Prahl SA, and Jacques SL. Collection efficiency of a single optical fiber in turbid media. Appl. Opt., 42(16):3187–3197 (2003).

    Article  ADS  Google Scholar 

  68. Liu Q, Zhu CF, and Ramanujam N. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. J. Biomed. Opt., 8(2):223–236 (2003).

    Article  ADS  Google Scholar 

  69. Schmitt JM and Kumar G. Spectral distortions in near-infrared spectroscopy of turbid materials. Appl. Spec., 50(8):1066–1073 (1996).

    Article  ADS  Google Scholar 

  70. Kumar G and Schmitt JM. Optimal probe geometry for near-infrared spectroscopy of biological tissue. Appl. Opt., 36(10):2286–2293 (1997).

    Article  ADS  Google Scholar 

  71. Welch AJ, Gardner C, RichardsKortum R, Chan E, Criswell G, Pfefer J, and Warren S. Propagation of fluorescent light. Lasers Surg. Med., 21(2):166–178 (1997).

    Article  Google Scholar 

  72. Pfefer TJ, Matchette LS, and Drezek R. Influence of illumination-collection geometry on fluorescence spectroscopy in multilayer tissue. Med. Biol. Eng. Comput., 42(5):669–673 (2004).

    Article  Google Scholar 

  73. Pfefer TJ, Schomacker KT, Ediger MN, and Nishioka NS. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt., 41(22):4712–4721 (2002).

    Article  ADS  Google Scholar 

  74. Zhu CF, Liu Q, and Ramanujam N. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: A Monte Carlo simulation. J. Biomed. Opt., 8(2):237–247 (2003).

    Article  ADS  Google Scholar 

  75. Chang SK, Arifler D, Drezek R, Follen M, and Richards-Kortum R. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: Comparison with Monte Carlo simulations and clinical measurements. J. Biomed. Opt., 9(3):511–522 (2004).

    Article  ADS  Google Scholar 

  76. Durkin AJ, Jaikumar S, Ramanujam N, and Richardskortum R. Relation between fluorescence-spectra of dilute and turbid samples. Appl. Opt., 33(3):414–423 (1994).

    Article  ADS  Google Scholar 

  77. Zhang QG, Muller MG, Wu J, and Feld MS. Turbidity-free fluorescence spectroscopy of biological tissue. Opt. Lett., 25(19):1451–1453 (2000).

    Article  ADS  Google Scholar 

  78. Richards-Kortum R, Mehta A, Hayes G, Cothren R, Kolubayev T, Kittrell C, Ratliff NB, Kramer JR, and Feld MS. Spectral diagnosis of atherosclerosis using an optical fiber laser catheter. Am. Heart J., 118(2):381–391 (1989).

    Article  Google Scholar 

  79. Keijzer M, Richardskortum RR, Jacques SL, and Feld MS. Fluorescence spectroscopy of turbid media – autofluorescence of the human aorta. Appl. Opt., 28(20):4286–4292 (1989).

    Article  ADS  Google Scholar 

  80. Avrillier S, Tinet E, Ettori D, Tualle JM, and Gelebart B. Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media. Appl. Opt., 37(13):2781–2787 (1998).

    Article  ADS  Google Scholar 

  81. Swartling J, Svensson J, Bengtsson D, Terike K, and Andersson-Engels S. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue. Appl. Opt., 44(10):1934–1941 (2005).

    Article  ADS  Google Scholar 

  82. Gebhart SC, Mahadevan-Jansen A, and Lin WC. Experimental and simulated angular profiles of fluorescence and diffuse reflectance emission from turbid media. Appl. Opt., 44(23):4884–4901 (2005).

    Article  ADS  Google Scholar 

  83. Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Silva E, and Richardskortum R. Fluorescence spectroscopy – a diagnostic-tool for cervical intraepithelial neoplasia (cin). Gynecol. Oncol., 52(1):31–38 (1994).

    Article  Google Scholar 

  84. Majumder SK, Gupta A, Gupta S, Ghosh N, and Gupta PK. Multi-class classification algorithm for optical diagnosis of oral cancer. J. Photochem. Photobiol. B-Biol., 85(2):109–117 (2006).

    Article  Google Scholar 

  85. Kamath SD, Bhat RA, Ray S, and Mahato KK. Autofluorescence of normal, benign, and malignant ovarian tissues: A pilot study. Photomed. Laser Surg., 27(2):325–335 (2009).

    Article  Google Scholar 

  86. Wang GF, Platz CP, and Geng ML. Probability-based differential normalized fluorescence bivariate analysis for the classification of tissue autofluorescence spectra. Appl. Spec., 60(5):545–550 (2006).

    Article  ADS  Google Scholar 

  87. Wang LQ and Mizaikoff B. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal. Bioanal. Chem., 391(5):1641–1654 (2008).

    Article  Google Scholar 

  88. Escandar GM, Damiani PC, Goicoechea HC, and Olivieri AC. A review of multivariate calibration methods applied to biomedical analysis. Microchem. J. 82(1):29–42 (2006).

    Article  Google Scholar 

  89. Dillon RW and Goldstein M. Multivariate analysis: Methods and applications. Wiley, New York (1984).

    MATH  Google Scholar 

  90. Ramanujam N, Mitchell MF, Mahadevan A, Thomsen S, Malpica A, Wright T, Atkinson N, and Richards-Kortum R. Development of a multivariate statistical algorithm to analyze human cervical tissue fluorescence spectra acquired in vivo. Lasers Surg. Med., 19(1):46–62 (1996).

    Article  Google Scholar 

  91. Sajda P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng., 8:537–565 (2006).

    Article  Google Scholar 

  92. McCarthy JF, Marx KA, Hoffman PE, Gee AG, O’Neil P, Ujwal ML, and Hotchkiss J. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Appl. Bioinform. Canc. Det., 1020:239–262 (2004).

    Google Scholar 

  93. Sigurdsson S, Philipsen PA, Hansen LK, Larsen J, Gniadecka M, and Wulf HC. Detection of skin cancer by classification of Raman spectra. IEEE Trans. Biomed. Eng., 51(10):1784–1793 (2004).

    Article  Google Scholar 

  94. Carrara M, Bono A, Bartoli C, Colombo A, Lualdi M, Moglia D, Santoro N, Tolomio E, Tomatis S, Tragni G, Santinami M, and Marchesini R. Multispectral imaging and artificial neural network: Mimicking the management decision of the clinician facing pigmented skin lesions. Phys. Med. Biol., 52(9):2599–2613 (2007).

    Article  Google Scholar 

  95. Baek SJ, Park A, Kim JY, Na SY, Won Y, and Choo J. Detection of basal cell carcinoma by automatic classification of Confocal Raman spectra. Lect. Notes Comput. Sci., 4115:402–411 (2006).

    Article  Google Scholar 

  96. de Veld DCG, Schut TCB, Skurichina M, Witjes MJH, Van der Wal JE, Roodenburg JLN, and Sterenborg HJCM. Autofluorescence and Raman microspectroscopy of tissue sections of oral lesions. Lasers Med. Sci., 19(4):203–209 (2005).

    Article  Google Scholar 

  97. Albert A and Harris EK. Multivariate interpretation of clinical laboratory data. Marcel Dekker, New York (1987).

    Google Scholar 

  98. Halter RJ, Hartov A, Paulsen KD, Schned A, and Heaney J. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol. Meas., 29(6):S111–S123 (2008).

    Article  ADS  Google Scholar 

  99. Majumder SK, Keller MD, Boulos FI, Kelley MC, and Mahadevan-Jansen A. Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination. J. Biomed. Opt., 13(5):054009 (2008).

    Article  ADS  Google Scholar 

  100. Smit S, Hoefsloot HCJ, and Smilde AK. Statistical data processing in clinical proteomics. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci., 866(1–2):77–88 (2008).

    Article  Google Scholar 

  101. Diana G and Tommasi C. Cross-validation methods in principal componant analysis: A comparison. Stat. Methods Appl., 11:71–82 (2002).

    Article  MATH  Google Scholar 

  102. Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia, 2(1–2):89–117 (2000).

    Article  Google Scholar 

  103. Baas P, Triesscheijn M, Burgers S, van Pel R, Stewart F, and Aalders M. Fluorescence detection of pleural malignancies using 5-aminolaevulinic acid. Chest, 129(3):718–724 (2006).

    Article  Google Scholar 

  104. Pichlmeier U, Bink A, Schackert G, Stummer W, and Grp AGS. Resection and survival in glioblastoma multiforme: An RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncol., 10(6):1025–1034 (2008).

    Article  Google Scholar 

  105. Eljamel MS, Goodman C, and Moseley H. ALA and Photofrin (R) fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre phase III randomised controlled trial. Lasers Med. Sci., 23(4):361–367 (2008).

    Article  Google Scholar 

  106. Xia DL, He JS, Zhang YD, Tang JT, Zhang B, Wang SC, and Huang QL. Study of a multivariate statistical 5-ALA-based discrimination method for fluorescence spectra of colonic tissue of SD rats. Spectrosc. Spectral Anal., 25(12):2029–2033 (2005).

    Google Scholar 

  107. Yang SJ, Shieh MJ, Lin FH, Lou PJ, Peng CL, Wei MF, Yao CJ, Lai PS, and Young TH. Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Lett., 273(2):210–220 (2009).

    Article  Google Scholar 

  108. Bakalova R, Zhelev Z, and Gadjeva V. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging – merits and demerits. Gen. Physiol. Biophys., 27(4):231–242 (2008).

    Google Scholar 

  109. Xing Y and Rao JH. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers, 4(6):307–319 (2008).

    Google Scholar 

  110. Lee H, Lee K, Kim IK, and Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials, 29(35):4709–4718 (2008).

    Article  Google Scholar 

  111. Lin WC, Toms SA, Johnson M, Jansen ED, and Mahadevan-Jansen A. In vivo brain tumor demarcation using optical spectroscopy. Photochem. Photobiol., 73(4):396–402 (2001).

    Article  Google Scholar 

  112. Bottiroli G, Croce AC, Locatelli D, Nano R, Giombelli E, Messina A, and Benericetti E. Brain tissue autofluorescence: An aid for intraoperative delineation of tumor resection margins. Cancer Detect. Prev., 22(4):330–339 (1998).

    Article  Google Scholar 

  113. Ikeda N, Honda H, Hayashi A, Usuda J, Kato Y, Tsuboi M, Ohira T, Hirano T, Kato H, Serizawa H, and Aoki Y. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer, 52(1):21–27 (2006).

    Article  Google Scholar 

  114. Fawzy Y and Zeng HZ. Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions. J. Biomed. Opt., 13(6):064022 (2008).

    Article  ADS  Google Scholar 

  115. Ueno K, Kusunoki Y, Imamura F, Yoshimura M, Yamamoto S, Uchida J, and Tsukamoto Y. Clinical experience with autofluorescence imaging system in patients with lung cancers and precancerous lesions. Respiration, 74(3):304–308 (2007).

    Article  Google Scholar 

  116. Huttenberger D, Gabrecht T, Wagnieres G, Weber B, Linder A, Foth HJ, and Freitag L. Autofluorescence detection of tumors in the human lung – spectroscopical measurements in situ, in an in vivo model and in vitro. Photodiagn. Photodyn., 5(2):139–147 (2008).

    Article  Google Scholar 

  117. Aihara H, Sumiyama K, Saito S, Tajiri H, and Ikegami M. Numerical analysis of the autofluorescence intensity of neoplastic and non-neoplastic colorectal lesions by using a novel videoendoscopy system. Gastrointest. Endosc., 69(3):726–733 (2009).

    Article  Google Scholar 

  118. DaCosta RS, Wilson BC, and Marcon NE. Optical techniques for the endoscopic detection of dysplastic colonic lesions. Curr. Opin. Gastroenterol., 21(1):70–79 (2005).

    Google Scholar 

  119. McCallum AL, Jenkins JT, Gillen D, and Molloy RG. Evaluation of autofluorescence colonoscopy for the detection and diagnosis of colonic polyps. Gastrointest. Endosc., 68(2):283–290 (2008).

    Article  Google Scholar 

  120. Huh WK, Cestero RM, Garcia FA, Gold MA, Guido RS, McIntyre-Seltman K, Harper DM, Burke L, Sum ST, Flewelling RF, and Alvarez RD. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: Results of a 604-patient study. Am. J. Obstet. Gynecol., 190(5):1249–1257 (2004).

    Article  Google Scholar 

  121. Chang SK, Marin N, Follen M, and Richards-Kortum R. Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia. J. Biomed. Opt., 11(2):024008 (2006).

    Article  ADS  Google Scholar 

  122. Szygula M, Wojciechowski B, Adamek M, Kawczyk-Krupka A, Cebula W, Zieleznik W, Biniszkiewicz T, Pietrusa A, and Sieron A. Photodynamic vs. autofluorescent diagnosis of urinary bladder using Xillix life system. Physica Medica, 20:55–57 (2004).

    Google Scholar 

  123. D’Hallewin MA, Bezdetnaya L, and Guillemin F. Fluorescence detection of bladder cancer: A review. Eur. Urol., 42(5):417–425 (2002).

    Article  Google Scholar 

  124. Falk GW, Oldenburgh M, Schoenfield L, and Lopez R. Autofluorescence endoscopy is inferior to white light endoscopy for detection of dysplasia/cancer in Barrett’s esophagus surveillance. Gastrointest. Endosc., 67(5):Ab174–Ab174 (2008).

    Article  Google Scholar 

  125. Borovicka J, Fischer J, Neuweiler J, Netzer P, Gschossmann J, Ehmann T, Bauerfeind P, Dorta G, Zurcher U, Binek J, and Meyenberger C. Autofluorescence endoscopy in surveillance of Barrett’s esophagus: a multicenter randomized trial on diagnostic efficacy. Endoscopy, 38(9):867–872 (2006).

    Article  Google Scholar 

  126. Drakaki E, Kaselouris E, Makropoulou M, Serafetinides AA, Tsenga A, Stratigos AJ, Katsambas AD, and Antoniou C. Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue. Skin Pharmacol. Physiol., 22(3):158–165 (2009).

    Article  Google Scholar 

  127. Borisova EG, Troyanova PP, and Avramov LA. Fluorescence spectroscopy for early detection and differentiation of cutaneous pigmented lesions. Optoelectron. Adv. Mater.-Rapid Comm., 1(8):388–393 (2007).

    Google Scholar 

  128. Chowdary MVP, Mahato KK, Kumar KK, Mathew S, Rao L, Krishna CM, and Kurien J. Autofluorescence of breast tissues: Evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions. Photomed. Laser Surg., 27(2):241–252 (2009).

    Article  Google Scholar 

  129. Breslin TM, Xu FS, Palmer GM, Zhu CF, Gilchrist KW, and Ramanujam N. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues. Ann. Surg. Oncol., 11(1):65–70 (2004).

    Article  Google Scholar 

  130. van de Poll SWE, Dasari RR, and Kramer JR. The role of laser-induced fluorescence spectroscopy in the detection of human atherosclerosis. Curr. Sci., 77(7):934–941 (1999).

    Google Scholar 

  131. Ramanujam N, Mitchell MF, MahadevanJansen A, Thomsen SL, Staerkel G, Malpica A, Wright T, Atkinson N, and RichardsKortum R. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem. Photobiol., 64(4):720–735 (1996).

    Article  Google Scholar 

  132. Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, and Deutsch TF. Ultraviolet laser-induced fluorescence of colonic tissue – basic biology and diagnostic potential. Lasers Surg. Med., 12(1):63–78 (1992).

    Article  Google Scholar 

  133. Hariri LP, Tumlinson AR, Besselsen DG, Utzinger U, Gerner EW, and Barton JK. Endoscopic optical coherence tomography and laser-induced fluorescence spectroscopy in a murine colon cancer model. Lasers Surg. Med., 38(4):305–313 (2006).

    Article  Google Scholar 

  134. Palmer GM, Zhu CF, Breslin TM, Xu FS, Gilchrist KW, and Ramanujam N. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003). IEEE Trans. Biomed. Eng., 50(11):1233–1242 (2003).

    Article  Google Scholar 

  135. Georgakoudi I, Sheets EE, Muller MG, Backman V, Crum CP, Badizadegan K, Dasari RR, and Feld MS. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J. Obstet. Gynecol., 186(3):374–382 (2002).

    Article  Google Scholar 

  136. van den Broek FJC, Fockens P, van Eeden S, Kara MA, Hardwick JCH, Reitsma JB, and Dekker E. Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin. Gastroenterol. Hepatol., 7(3):288–295 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Mahadevan-Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mahadevan-Jansen, A., Gebhart, S.C. (2010). Steady State Fluorescence Spectroscopy for Medical Diagnosis. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics