Skip to main content

Three-Dimensional Spectral Domain Optical Coherence Tomography

  • Chapter
  • First Online:
Spectral Domain Optical Coherence Tomography in Macular Diseases

Abstract

Optical coherence tomography (OCT) is an ever evolving technology that has revolutionized ophthalmic imaging. With the advent of spectral domain technology, an unparalleled micrometer axial resolution of 5–10 μm is achieved. With more data acquisition per scanning session, volumetric analysis and three-dimensional imaging are realized (Puliafito et al. 1995; Regatieri et al. 2012; Yannuzzi et al. 2004). Three-dimensional OCT generates OCT fundus images that enable precise registration of OCT images with the image of fundus on standard ophthalmoscopic examination techniques. This allows effortless localization of images for monitoring disease progression and response to therapy. Preservation of retinal topography enables visualization of subtle changes associated with the disease. With rapid evolution in technology, clinical usage of OCT has extended to diseases with more complex morphological features. Improved cellular level resolution has extended the application of spectral domain OCT to retinal degenerations and dystrophies. Three-dimensional imaging, with its increased potential in elucidating retinal morphology, provides a global perspective to various retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Yamamoto T, Kashiwagi Y et al (2013) Three-dimensional imaging of the inner limiting membrane folding on the vitreomacular interface in diabetic macular edema. Jpn J Ophthalmol 57:553–562

    Article  PubMed  Google Scholar 

  • Ahlers C, Geitzenauer W, Simader C et al (2008) New perspectives in diagnostics: high resolution optical coherence tomography for age related macular degeneration. Ophthalmologe 105:248–254

    Article  CAS  PubMed  Google Scholar 

  • Albert C, Bernd K, Sascha F (2011) Retinal pigment epithelium tears secondary to age-related macular degeneration—a simultaneous confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography study. Arch Ophthalmol 129:575–579

    Article  Google Scholar 

  • Altaweel M, Ip M (2003) Macular hole: improved understanding of pathogenesis, staging, and management based on optical coherence tomography. Semin Ophthalmol 18:58–66

    Article  PubMed  Google Scholar 

  • Apushkin MA, Fishman GA, Janowicz MJ (2005) Correlation of optical coherence tomography findings with visual acuity and macular lesions in patients with X-linked retinoschisis. Ophthalmology 112:495–501

    Article  PubMed  Google Scholar 

  • Arevalo JF, Fernandez CF, Garcia RA (2005) Optical coherence tomography characteristics of choroidal metastasis. Ophthalmology 112:1612–1619

    Article  PubMed  Google Scholar 

  • Arevalo JF, Lasave AF, Arias JD et al (2013) Clinical applications of optical coherence tomography in the posterior pole: the 2011 José Manuel Espino Lecture – Part II. Clin Ophthalmol 7:2181–2206

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodaghi B, Le Hoang P (2000) Ocular tuberculosis. Curr Opin Ophthalmol 11:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bonyadi MH (2013) Early and late spectral domain optical coherence tomography features of acute welding maculopathy. J Ophthalmic Vis Res 8:391–392

    Google Scholar 

  • Bonyadi MH, Soheilian R, Soheilian M et al (2011) Spectral-domain optical coherence tomography features of mild and severe acute solar retinopathy. Ophthalmic Surg Lasers Imaging 42:e84–e86

    PubMed  Google Scholar 

  • Cellini M, Gattegna R, Toschi PG et al (2011) Multifocal electroretinogram and optical coherence tomography spectral-domain in arc welding macular injury: a case report. BMC Ophthalmol 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang LK, Sarraf D (2007) Tears of the retinal pigment epithelium: an old problem in a new era. Retina 27:523–534

    Article  PubMed  Google Scholar 

  • Chan CK, Meyer CH, Gross JG et al (2007) Retinal pigment epithelial tears after intravitreal bevacizumab injection for neovascular age related macular degeneration. Retina 27:541–555

    Article  PubMed  Google Scholar 

  • Chang LK, Fine HF, Spaide RF et al (2008) Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol 146:121–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan CK, Abraham P, Meyer CH et al (2010) Optical coherence tomography-measured pigment epithelial detachment height as a predictor for retinal pigment epithelial tears associated with intravitreal bevacizumab injections. Retina 30:203–211

    Article  PubMed  Google Scholar 

  • Chiang A, Chang LK, Sarraf D et al (2008) Predictors of anti-VEGF associated retinal pigment epithelial tear using FA and OCT analysis. Retina 28:1265–1269

    Article  PubMed  Google Scholar 

  • Condon GP, Brownstein S, Wang NS (1986) Congenital hereditary (juvenile X-linked) retinoschisis: histopathologic and ultrastructural findings in three eyes. Arch Ophthalmol 104:576–583

    Article  CAS  PubMed  Google Scholar 

  • Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  • Duker JS, Kaiser PK, Binder S et al (2013) The International vitreomacular traction study group classification of vitreomacular adhesion, traction and macular hole. Ophthalmology 120:2611–2619

    Article  PubMed  Google Scholar 

  • Elbendary AM (2010) Three dimensional characterization of epiretinal membrane using spectral domain optical coherence tomography. Saudi J Ophthalmol 24:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliassi-Rad B, Albert DM, Green WR (1996) Frequency of ocular metastases in patients dying of cancer in eye bank populations. Br J Ophthalmol 80:125–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson U, Larsson E, Holmstrom G (2004) Optical coherence tomography in the diagnosis of juvenile X linked retinoschisis. Acta Ophthalmol Scand 82:218–223

    Article  PubMed  Google Scholar 

  • Ferry AP, Font RL (1974) Carcinoma metastatic to the eye and orbit: a clinicopathologic study of 227 cases. Arch Ophthalmol 92:276–286

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H, Gomi F, Wakabayashi T et al (2008) Morphologic changes in acute central serous chorioretinopathy evaluated by Fourier-domain optical coherence tomography. Ophthalmology 115:1494–1500

    Article  PubMed  Google Scholar 

  • Gallemore RP, Jumper JM, McCuen BW et al (2000) Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 20:115–120

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Mets MB, Bearelly S et al (2009) Imaging of congenital toxoplasmosis macular scars with optical coherence tomography. Retina 29:631–637

    Article  PubMed  Google Scholar 

  • Gass JD (1984) Pathogenesis of the tears of the RPE. Br J Ophthalmol 68:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gass JD (1997) Stereoscopic atlas of macular diseases: diagnosis and treatment. Mosby, St. Louis Missouri

    Google Scholar 

  • Gerth C, Zawadzki RJ, Werner JS et al (2008) Retinal morphological changes of patients with X-linked retinoschisis evaluated by Fourier-domain optical coherence tomography. Arch Ophthalmol 126:807–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenberg PB, Martidis A, Rogers AH et al (2002) Intravitreal triamcinolone acetonide for macular oedema due to central retinal vein occlusion. Br J Ophthalmol 86:247–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Greene JM, Shakin EP (2004) Optical coherence tomography findings in foveal schisis. Arch Ophthalmol 122:1066–1067

    Article  PubMed  Google Scholar 

  • Gupta V, Shoughy SS, Mahajan S et al (2015) Clinics of ocular tuberculosis. Ocul Immunol Inflamm 23:14–24

    Article  PubMed  Google Scholar 

  • Guyer DR, Yannuzzi LA, Slakter JS et al (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Hangai M, Ojima Y, Gotoh N et al (2007) Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology 114:763–773

    Article  PubMed  Google Scholar 

  • Haouchine B, Massin P, Tadayoni R et al (2004) Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 138:732–739

    Article  PubMed  Google Scholar 

  • Hee MR, Baumal CR, Puliafito CA et al (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Hikichi T, Yoshida A, Trempe CL (1995) Course of vitreomacular traction syndrome. Am J Ophthalmol 119:55–61

    Article  CAS  PubMed  Google Scholar 

  • Hussain N, Baskar A, Ram LM et al (2006) Optical coherence tomographic pattern of fluorescein angiographic leakage site in acute central serous chorioretinopathy. Clin Experiment Ophthalmol 34:137–140

    Article  PubMed  Google Scholar 

  • Inoue M, Watanabe Y, Arakawa A et al (2009) Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol 247:325–330

    Article  PubMed  Google Scholar 

  • Ito Y, Terasaki H, Mori M et al (2000) Three-dimensional optical coherence tomography of vitreomacular traction syndrome before and after vitrectomy. Retina 20:403–405

    Article  CAS  PubMed  Google Scholar 

  • Kamppeter B, Jonas JB (2003) Central serous chorioretinopathy imaged by optical coherence tomography. Arch Ophthalmol 121:742–743

    Article  PubMed  Google Scholar 

  • Karatas M, Ramirez JA, Ophir A (2005) Diabetic vitreopapillary traction and macular oedema. Eye 19:676–682

    Article  CAS  PubMed  Google Scholar 

  • Khanifar AA, Koreishi AF, Izatt JA et al (2008) Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115:1883–1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Koerner F, Garweg J (1999) Vitrectomy for macular pucker and vitreomacular traction syndrome. Doc Ophthalmol 97:449–458

    Article  CAS  PubMed  Google Scholar 

  • Koizumi H, Spaide RF, Fisher YL et al (2008) Three dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral domain optical coherence tomography. Am J Ophthalmol 145:509–517

    Article  PubMed  Google Scholar 

  • Kroll P, Wiegand W, Schmidt J (1999) Vitreopapillary traction in proliferative diabetic vitreoretinopathy. Br J Ophthalmol 83:261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafaut BA, Aisenbrey S, VandenBroecke C et al (2001) Clinicopathological correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear, and scarred tear. Br J Ophthalmol 85:454–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legarreta JE, Gregori G, Knighton RW et al (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthalmol 145:1023–1030

    Article  PubMed  Google Scholar 

  • Leitritz M, Gelisken F, Inhoffen W et al (2008) Can the risk of retinal pigment epithelium tears after bevacizumab treatment be predicted? An optical coherence tomography study. Eye 22:1504–1507

    Article  CAS  PubMed  Google Scholar 

  • Lida T, Hagimura N, Sato T et al (2000) Evaluation of central serous chorioretinopathy with optical coherence tomography. Am J Ophthalmol 129:16–20

    Article  Google Scholar 

  • Mitarai K, Gomi F, Tano Y (2006) Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 244:1415–1420

    Article  PubMed  Google Scholar 

  • Monnet D, Averous K, Delair E et al (2009) Optical coherence tomography in ocular toxoplasmosis. Int J Med Sci 6:137–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero JA, Ruiz-Moreno JM (2005) Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. Br J Ophthalmol 89:562–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori K, Gehlbach PL, Sano A et al (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24:57–62

    Article  PubMed  Google Scholar 

  • Ojima Y, Hangai M, Sasahara M et al (2007) Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 114:2197–2207

    Article  PubMed  Google Scholar 

  • Ophir A, Martinez MR (2011) Epiretinal membranes and incomplete posterior vitreous detachment in diabetic macular edema, detected by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:6414–6420

    Article  PubMed  Google Scholar 

  • Orefice JL, Costa RA, Orefice F et al (2007) Vitreoretinal morphology in active ocular toxoplasmosis: a prospective study by optical coherence tomography. Br J Ophthalmol 91:773–780

    Article  PubMed  Google Scholar 

  • Perez-Alvarez MJ, Arriola-Villalobos P, Reche-Frutos J et al (2009) Choroidal metastasis from a breast carcinoma. Diagnosis and follow-up with optical coherence tomography and fluorescein angiography and autofluorescence with HRA-II (Heidelberg Retina Angiograph). Arch Soc Esp Oftalmol 84:267–270

    Article  CAS  PubMed  Google Scholar 

  • Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14:231–242

    Article  CAS  PubMed  Google Scholar 

  • Piccolino FC, Longrais RR, Ravera G et al (2005) The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 139:87–99

    Article  PubMed  Google Scholar 

  • Podoleanu AG, Jackson DA (1998) Combined optical coherence tomograph and scanning laser ophthalmoscope. Electron Lett 34:1088–1090

    Article  Google Scholar 

  • Podoleanu AG, Seeger M, Dobre GM et al (1998) Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J Biomed Opt 3:12–20

    Article  CAS  PubMed  Google Scholar 

  • Power WJ, Travers SP, Mooney DJ (1991) Welding arc maculopathy and fluphenazine. Br J Ophthalmol 75:433–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prenner JL, Capone A Jr, Ciaccia S et al (2006) Congenital X-linked retinoschisis classification system. Retina 26:S61–S64

    Article  PubMed  Google Scholar 

  • Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229

    Article  CAS  PubMed  Google Scholar 

  • Punjabi OS, Flynn HW Jr, Knighton RW et al (2008) Spectral domain optical coherence tomography for proliferative diabetic retinopathy with subhyaloid hemorrhage. Ophthalmic Surg Lasers Imaging 39:494–496

    Article  PubMed  Google Scholar 

  • Querques G, Leveziel N, Benhamou N et al (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Querques G, Prato R, Coscas G et al (2009) In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography. Clin Ophthalmol 3:693–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Querques G, Avellis FO, Querques L et al (2011) Three dimensional spectral domain optical coherence tomography features of retinal-choroidal anastomosis. Graefes Arch Clin Exp Ophthalmol 250:165–173

    Article  PubMed  Google Scholar 

  • Regatieri CV, Branchini L, Fujimoto JG et al (2012) Choroidal imaging using spectral-domain optical coherence tomography. Retina 32:865–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Salman A, Parmar P, Rajamohan M et al (2006) Optical coherence tomography in choroidal tuberculosis. Am J Ophthalmol 142:170–172

    Article  PubMed  Google Scholar 

  • Saxena S, Kumar D (2000) Macular involvement in Eales disease. Ann Ophthalmol 32:98–100

    Article  Google Scholar 

  • Saxena S, Meredith TA (2006) Optical coherence tomography. In: Saxnea S, Meredith TA (eds) Optical coherence tomography in retinal diseases, 1st edn. McGraw-Hill publishers, New York

    Google Scholar 

  • Saxena S, Rastogi RAK, Vishvkarma K et al (2010) Spectral-domain optical coherence tomography in healed ocular toxoplasmosis. J Ocul Biol Dis Inform 3:109–111

    Article  Google Scholar 

  • Saxena S, Sinha N, Sharma S (2011) Three-dimensional imaging by spectral domain optical coherence tomography in central serous chorioretinopathy with fibrin. J Ocul Biol Dis Inform 4:149–153

    Article  Google Scholar 

  • Saxena S, Jain A, Akduman L (2012) Vitreopapillary and vitreomacular traction in proliferative Eales’ disease. BMJ Case Rep. doi:10.1136/bcr-2012-007231

  • Saxena S, Jain A, Akduman L (2012b) Three-dimensional spectral domain optical coherence tomography of retina in choroidal metastasis due to breast and lung carcinoma. J Ocul Biol Dis Infor 5:9–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Jain A, Sharma SR, Meyer CH (2012c) Three-dimensional spectral domain optical coherence tomography of retina in choroidal metastasis due to uterine endometrial carcinoma. BMJ Case Rep 11:2012

    Google Scholar 

  • Saxena S, Mishra N, Meyer CH (2012d) 3D spectral domain OCT in spontaneous retinal pigment epithelial tear. J Ocul Biol Dis Infor 5:70–76

    Article  PubMed  Google Scholar 

  • Saxena S, Mishra N, Meyer CH (2012e) Three-dimensional spectral domain optical coherence tomography in Stargardt disease and fundus flavimaculatus. J Ocul Biol Dis Infor 5:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Manisha, Meyer CH (2013a) Three-dimensional spectral domain optical coherence tomography in X linked foveal retinoschisis. BMJ Case Rep. doi:10.1136/bcr-2012-007661

  • Saxena S, Mishra N, Meyer CH et al (2013b) Ischaemia-reperfusion injury in central retinal artery occlusion. BMJ Case Rep. doi:10.1136/bcr-2013-201415

  • Saxena S, Singhal V, Akduman L (2013c) Three-dimensional spectral domain optical coherence tomography imaging of the retina in choroidal tuberculoma. BMJ Case Rep. doi:10.1136/bcr-2012-008156

  • Saxena S, Mishra N, Meyer CH (2014) Three-dimensional spectral domain optical coherence tomography in chronic exposure to welding arc. BMJ Case Rep

    Google Scholar 

  • Scheider A, Nasemann JE, Lund OE (1993) Fluorescein and indocyanine green angiographies of central serous choroidopathy by scanning laser ophthalmoscopy. Am J Ophthalmol 115:50–56

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Kube T, Feltgen N (2006) Central retinal artery occlusion: findings in optical coherence tomography and functional correlations. Eur J Med Res 11:250–252

    PubMed  Google Scholar 

  • Shiraki K, Kohno T, Ataka S et al (2001) Thinning and small holes at an impending tear of a retinal pigment epithelial detachment. Graefes Arch Clin Exp Ophthalmol 239:430–436

    Article  CAS  PubMed  Google Scholar 

  • Spaide RF (2005) Central serous chorioretinopathy. In: Holz FG, Spaide RF (eds) Medical retina essentials in ophthalmology. Springer, New York

    Google Scholar 

  • Spaide RF, Lee JK, Klancnik JK Jr et al (2003) Optical coherence tomography of branch retinal vein occlusion. Retina 23:343–347

    Article  PubMed  Google Scholar 

  • Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  • Srinivasan VJ, Wojtkowski M, Witkin AJ et al (2006a) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113:2054–2065

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan VJ, Ko TH, Wojtkowski M et al (2006b) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47:5522–5528

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilanus MA, Cuypers MH, Bemelmans NA et al (1999) Predictive value of pattern VEP, pattern ERG and hole size in macular hole surgery. Graefes Arch Clin Exp Ophthalmol 237:629–635

    Article  CAS  PubMed  Google Scholar 

  • Ullrich S, Haritoglou C, Gass C et al (2002) Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol 86:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdina T, Tsang SH, Greenstein VC et al (2012) Functional analysis of retinal flecks in stargardt disease. J Clin Exp Ophthalmol 3:6

    Article  Google Scholar 

  • Voigt M, Querques G, Atmani K et al (2010) Analysis of retinal flecks in fundus flavimaculatus using high-definition spectral-domain optical coherence tomography. Am J Ophthalmol 150:330

    Article  PubMed  Google Scholar 

  • Wang MY, Nguyen D, Hindoyan N et al (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29:644–650

    Article  PubMed  Google Scholar 

  • Wang GH, Zhang J, Zhang D et al (2011) Value of three dimensional optical coherence tomography and fundus photochromy in correlating the fluorescein leaking sites of acute central serous chorioretinopathy. Med Princ Pract 20:283–286

    Article  PubMed  Google Scholar 

  • Wilkins JR, Puliafito CA, Hee MR et al (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103:2142–2151

    Article  CAS  PubMed  Google Scholar 

  • Witkin AJ, Ko TH, Fujimoto JG et al (2006) Redefining lamellar holes and the vitreomacular interface: an ultrahigh-resolution optical coherence tomography study. Ophthalmology 113:388–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojtkowski M, Srinivasan V, Fujimoto JG et al (2005) Three-dimensional retinal imaging with highspeed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong JG, Sachdev N, Beaumont PE et al (2005) Visual outcomes following vitrectomy and peeling of epiretinal membrane. Clin Experiment Ophthalmol 33:373–378

    Article  PubMed  Google Scholar 

  • Yamada N, Kishi S (2005) Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol 139:112–117

    Article  PubMed  Google Scholar 

  • Yamaike N, Tsujikawa A, Ota M et al (2008) Three dimensional imaging of cystoid macular edema in retinal vein occlusion. Ophthalmology 115:355–362

    Article  PubMed  Google Scholar 

  • Yannuzzi LA, Ober MD, Slakter JS et al (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137:511–524

    Article  PubMed  Google Scholar 

  • Yanoff M, Fine BS (1989) Ocular pathology. A text and atlas. Mosby, St. Louis Missouri

    Google Scholar 

  • Yi K, Mujat M, Park BH et al (2009) Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration. Br J Ophthalmol 93:176–181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Saxena MS,FRCSEd,FRCS,FRCOphth,FAICO .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 30000 kb)

(WMV 1606 kb)

Video 2.1

(WMV 629 kb)

Video 2.2

(WMV 606 kb)

Video 2.4

(WMV 637 kb)

Video 2.5

(WMV 661 kb)

Video 2.6

(WMV 653 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Ruia, S., Saxena, S. (2017). Three-Dimensional Spectral Domain Optical Coherence Tomography. In: Meyer, C., Saxena, S., Sadda, S. (eds) Spectral Domain Optical Coherence Tomography in Macular Diseases. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3610-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3610-8_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3608-5

  • Online ISBN: 978-81-322-3610-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics