Skip to main content

Special Aspects of Biomineralization of Dental Tissues

  • Chapter
Teeth

Part of the book series: Handbook of Microscopic Anatomy ((1668,volume 5 / 6))

Abstract

As seen in earlier contributions to this volume concerning enamel, dentine, and cementum formation (and also considering bone and cartilage mineralization in the epiphyseal growth plate), it is clear that distinct differences exist in hard tissue formation in these various systems. These arise, e.g., from changes in the expression of the enamel cells (the ameloblasts) and the dentine cells (the odontoblasts) – though both are prismatically shaped, and densely arranged in parallel. Morphology at the electron-microscopical level shows important variations in crystal nucleation, growth, and arrangement of the crystallites into larger groups. In enamel so-called prisms exist with a diameter in the range of 4–6 µm and long, prismatically shaped crystallites perfectly arranged in parallel. In dentine, however, there is not such a precise parallel arrangement of crystals over such large areas; the much smaller needle- and ribbonlike elongated crystallites are arranged in parallel only on and in the 50–100-nm-thick collagen fibers of type I. Over wide reaches, while the collagen fibers in dentine form an irregular network, the collagen fibers in cementum are partly arranged in parallel to form bundles, thus leading to a parallel arrangement of the crystallites. (Since it is more important to clarify the relationship and correspondences between enamel and dentine, the collagen mineralization of cementum will not be discussed here, although it shows great similarities to that of dentine.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson HC (1967) Electron microscopic studies of induced cartilage development and calcification. J Cell Biol 35:81–101

    Article  PubMed  CAS  Google Scholar 

  • Ali SY, Sajdera SW, Anderson HC (1970) Isolation of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Arends J, Jongebloed WL (1978) Crystallite dimensions of enamel. J Biol Buccale 6:161–171

    PubMed  CAS  Google Scholar 

  • Astbury WT, Beighton E, Parker KD (1959) The cross-β configuration in supercontracted proteins. Biochem Biophys Acta 35:17–25

    Article  PubMed  CAS  Google Scholar 

  • Ayad S, Kwan APL, Grant ME (1987) Partial characterization of type X collagen from bovine growth plate cartilage. FEBS Lett 220:181–186

    Article  PubMed  CAS  Google Scholar 

  • Barckhaus RH, Höhling HJ (1978) Electron microscopical microprobe analysis of freeze dried and unstained mineralized epiphyseal cartilage. Cell Tissue Res 186:541–549

    Article  PubMed  CAS  Google Scholar 

  • Barckhaus RH, Krefting ER, Althoff J, Quint P, Höhling HJ (1981) Electron microscopic microprobe analysis on the initial stages of mineral formation in the epiphyseal growth plate. Cell Tissue Res 217:661–666

    Article  PubMed  CAS  Google Scholar 

  • Barckhaus RH, Greinke F, Goebeler M, Höhling HJ (1986) Analysis of the fine structure and pathway of extrusion of the matrix vesicles (MV) and related compounds in the epiphyseal growth plate. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Elsevier Science Publishers, Amsterdam New York Oxford, pp 39–44

    Google Scholar 

  • Baylink J, Wergedal J, Thompson E (1972) Loss of proteinpolysaccharides at sites where bone mineralization is initiated. J Histochem Cytochem 20:279–292

    Article  PubMed  CAS  Google Scholar 

  • Bernard G, Marvoso V (1981) Matrix vesicles as an assay for primary tissue calcification in vivo and in vitro. In: Ascenzi A, Bonucci E, de Bernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 5–11

    Google Scholar 

  • Berthet-Colominas C, Miller A, White SW (1979) Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol 134:431–445

    Article  PubMed  CAS  Google Scholar 

  • Bonar LC, Mechanic GL a Glimcher MJ (1965) Optical rotary dispersion studies of neutral soluble proteins of embryonic bovine enamel. J Ultrastruct Res 13:296–307

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1985) Crystal matrix relationship in calcifying organic matrices. In: Belcourt AB, Ruch JV (eds) Tooth morphogenesis and differentiation. Les Editions INSERM, Paris, pp 459–471

    Google Scholar 

  • Bonucci E, Reurink J (1978) The fine structure of decalcified cartilage and bone. A comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25:179–190

    Article  PubMed  CAS  Google Scholar 

  • Boskey AL (1981) Current concepts of the physiology and biochemistry of calcification. Clin Orthop 157:225–257

    PubMed  CAS  Google Scholar 

  • Boyde A (1964) “The structure and development of mammalian enamel”. PhD Thesis, Dept Anatomy, The London Hospital Medical College

    Google Scholar 

  • Boyde A (1974) Transmission electron microscopy of ion beam thinned dentine. Cell Tissue Res 152:543–550

    Article  PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ (1977) Qualitative electronprobe analysis of secretory ameloblasts and odontoblasts in the rat incisor. Histochemistry 50:347–354

    Article  PubMed  CAS  Google Scholar 

  • Bronkers ALJJ, Gay S, DiMuzio MT, Butler WT (1985) Immunolocalization of γ-carboxyglutamic acid containing proteins in developing molar tooth germs of the rat. Coll Relat Res 5:17–22

    Google Scholar 

  • Brown WE, Chow LC, Siew C, Gruninger S (1984) Acidic calcium phosphate precursors in formation of enamel mineral. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier Science Publishers, Amsterdam New York Oxford, pp 8–13

    Google Scholar 

  • Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236

    Article  PubMed  CAS  Google Scholar 

  • Butler WT (1984) Matrix macromolecules of bone and dentin. Coll Relat Res 4:297–307

    PubMed  CAS  Google Scholar 

  • Butler WT, Bhown M, DiMuzio MT, Linde A (1981) Noncollagenous proteins of dentin. Isolation and partial characterization of rat dentin proteins and proteoglycans using a three-step preparative method. Coll Relat Res 1:187–199

    PubMed  CAS  Google Scholar 

  • Butler WT, Bhown M, DiMuzio MT, Cothran WC, Linde A (1983) Multiple forms of rat dentin phosphoproteins. Arch Biochem Biophys 225:178–186

    Article  PubMed  CAS  Google Scholar 

  • Campo RD, Romano JE (1986) Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39:175–184

    Article  PubMed  CAS  Google Scholar 

  • Casciani FS, Doty S, Etz E (1979) The Raman spectra of mineralizing rat incisor enamel. J Dent Res 58A:231 (Abstr No 551)

    Google Scholar 

  • Cohen-Solal L, Lian JB, Kossiva D, Glimcher MJ (1978) The identification of O-phosphothreonine in the soluble non collageneous phosphoproteins of bone matrix. FEBS Lett 89:107–110

    Article  PubMed  CAS  Google Scholar 

  • Daculsi G, Kerebel B (1978) High resolution electron microscope study of human enamel crystallites: Size, shape, growth. J Ultrastruct Res 65:163–172

    Article  PubMed  CAS  Google Scholar 

  • Deporter DA (1977) The early mineralization of enamel. Calcif Tissue Res 24:271–274

    Article  PubMed  CAS  Google Scholar 

  • DiMuzio MT, Veis A (1978) Phosphoryns – major noncollageneous proteins of rat incisor dentin. Calcif Tissue Res 25:169–178

    Article  PubMed  CAS  Google Scholar 

  • DiMuzio MT, Bhown M, Butler WT (1983) The biosynthesis of γ-carboxyglutamic acid-containing proteins by rat incisor odontoblasts in organ culture. Biochem J 216:249–257

    PubMed  CAS  Google Scholar 

  • Eastoe JE (1965) The chemical composition of bone and tooth. Adv Fluor Res Dent Caries Prevention 3:5–17

    CAS  Google Scholar 

  • Eisenmann DR, Glick PL (1972) Ultrastructure of initial crystal formation in dentin. J Ultrastruct Res 41:18–28

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann DR, Ashrafi SH, Neumann A (1979) Calcium transport and the secretory ameloblast. Anat Rec 193:403–422

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann DR, Ashrafi SH, Zaki AE (1984) Calcium distribution in freeze dried enamel organ tissue during normal and altered enamel mineralization. Calcif Tissue Int 36:596–603

    Article  PubMed  CAS  Google Scholar 

  • Engfeldt EB, Hjerpe A (1972) Glycosaminoglycans of dentine and predentine. Calcif Tissue Res 10:152–159

    Article  PubMed  CAS  Google Scholar 

  • Fietzek PP, Kühn K (1975) Information contained in the amino-acid sequence of the α1-chain of collagen and its consequences upon the formation of the triplehelix of fibrils and crosslinks. Mol Cell Biochem 8:141–157

    Article  PubMed  CAS  Google Scholar 

  • Fincham AG (1984) Amelogenins, progress and problems. In: Fearnhead RW, Suga S (ed) Tooth enamel IV. Elsevier Science Publishers, Amsterdam New York Oxford, pp 114–119

    Google Scholar 

  • Fisher LW, Termine JD, Dejter SW Jr, Whitson SW, Yanagishita M, Kimura JH, Hascall VC, Kleinman HK, Hassell JR, Nilsson B (1983) Proteoglycans of developing bone. J Biol Chem 258:6588–6594

    PubMed  CAS  Google Scholar 

  • Frank RM, Nalbandian J (1967) Ultrastructure of amelogenesis. In: Miles AEW (ed) Structural and chemical organization of teeth, I. Academic, New York, pp 399–462

    Google Scholar 

  • Garant PR (1986) personal letter July 30

    Google Scholar 

  • Glimcher MJ, Bonar LC, Daniel EJ (1961) The molecular structure of the protein matrix of bovine dental enamel. J Mol Biol 3:541–546

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D (1983) Electron microscopic visualization of proteoglycans in rat incisor predentine and dentine with cuprolinic blue. Arch Oral Biol 28:79–83

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D, Escaig-Haye F (1987) Glycoconjugates in dentino-genesis and dentine. In: Graumann W, Lojda Z, Pearse AGE, Schiebler TH (eds) Progress histochem and cytochem 17, no 2. Fischer, Stuttgart New York

    Google Scholar 

  • Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect an amorphous calcium phosphate solid phase in bone mineral: A radial distribution function study. Calcif Tissue Int 36:291–301

    Article  PubMed  CAS  Google Scholar 

  • Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino-acid γ-carboxyglutamate in mineralized tissue. Proc Natl Acad Sci USA 72:3925–3929

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Bianco P, Shimokawa H, Termine JD, Bonucci E (1986) Organic-inorganic relationships, and immunhistochemical localization of amelogenins and enamelins in developing enamel. Basic Appl Histochem 30:291–299

    PubMed  CAS  Google Scholar 

  • Herring GM (1968) The chemical structure of tendon, cartilage, dentine and bone matrix. Clin Orthop 30:261–299

    Google Scholar 

  • Hirschman A, Deutsch D, Hirschman M, Bab IA, Sela J, Mulrad A (1983) Neutral peptidase activities in matrix vesicles from bovine fetal alveolar bone and dog osteosarcoma. Calcif Tissue Int 35:791–797

    Article  PubMed  CAS  Google Scholar 

  • Hodge AJ, Petruska J A (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic, London New York, pp 289–300

    Google Scholar 

  • Höhling HJ (1966) Die Bauelemente von Zahnschmelz und Dentin aus morphologischer, chemischer und struktureller Sicht. Hanser, München, S 9-127

    Google Scholar 

  • Höhling HJ, Frank RM, Harndt R (1963) Röntgenographische Untersuchungen an der organischen Matrix von foetalem und jugendlichem menschlichen Schmelz. Das Deutsche Zahnärzteblatt 17:77–82

    Google Scholar 

  • Höhling HJ, Fearnhead RW, Lotter G (1968) Kombination von Röntgen- und Elektronenbeugung sowie Elektronenmikroskopie zur Bestimmung der Mineralkomponenten bei der Aorten-Verkalkung. German Medical Monthly 13:135-138 (Thieme, Stuttgart)

    Google Scholar 

  • Höhling HJ, Kreilos R, Neubauer G, Boyde A (1971) Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z Zellforsch 122:36–52

    Article  PubMed  Google Scholar 

  • Höhling HJ, Steffens H, Heuck F (1972) Untersuchungen zur Mineralisierungsdichte im Hartgewebe mit Proteinpolysaccharid bzw. mit Kollagen als Hauptbestandteil der Matrix. Z Zellforsch 134:283–296

    Article  PubMed  Google Scholar 

  • Höhling HJ, Ashton BA, Köster HD (1974) Quantitative electron microscopic investigations of mineral nucleation in collagen. Cell Tissue Res 148:11–26

    Article  PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER, Schreiber J (1976a) Electron microscopic microprobe analysis of mineralized collagen fibrils and extracollageneous regions in turkey leg tendon. Cell Tissue Res 175:345–350

    Article  PubMed  Google Scholar 

  • Höhling HJ, Steffens H, Stamm G, Mays U (1976b) Transmission microscopy of freeze dried unstained epiphyseal cartilage of the guinea pig. Cell Tissue Res 167: 243–263

    Article  PubMed  Google Scholar 

  • Höhling HJ, Ashton BA, Fietzek PP (1980a) Kollagenmineralisierung, in: Kuhlencordt F, Bartelheimer H (eds) Handbuch der inneren Medizin VI/1A Knochen-Gelenke-Muskeln. Springer, Berlin Heidelberg New York, S 59-80

    Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER (1980b) Hard tissue formation in collagen rich systems, calcium phosphate nucleation and organic matrix. Trends Biochem Sci 5:8–11

    Article  Google Scholar 

  • Höhling HJ, Althoff J, Barckhaus RH, Krefting ER, Lissner G, Quint P (1981a) Early stages of crystal nucleation in hard tissue formation. In: Schweiger HG (ed) International Cell Biology 1980-1981. Springer, Berlin Heidelberg New York, pp 974–982

    Chapter  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting ER, Althoff J, Quint P, Niestadtkötter R (1981b) Relationship between the Ca-phosphate crystallites and the collagen structure in turkey tibia tendon. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier, North Holland New York Amsterdam Oxford, pp 113–117

    Google Scholar 

  • Höhling HJ, Krefting ER, Barckhaus RH (1982) Does correlation exist between mineralization in collagen rich hard tissues and that in enamel? J Dent Res 61:1496–1503 (sp Issue)

    Google Scholar 

  • Hosemann R, Nemetschek TH (1973) Reaktionsabläufe zwischen Phosphorwolframsäure und Kollagen. Kolloid Z u Z Polymere 251:53–60

    Article  CAS  Google Scholar 

  • Hunziker EB, Herrmann W, Schenk RK, Marti T, Müller M, Mohr H (1981) Structural integration of matrix vesicles in calcifying cartilage after cryofixation and freeze substitution. In: Ascenzi A, Bonucci E, DeBernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 25–31

    Google Scholar 

  • Itoh T, Klein L, Geil PH (1982) Age dependence of collagen fibrils and subfibril diameters revealed by transverse freeze-fracture and etching technique. J Microsc 125:343–357

    Article  Google Scholar 

  • Jodaikin A, Traub W, Weiner S (1986) Protein conformation in rat tooth enamel. Arch Oral Biol 31:685–689

    Article  PubMed  CAS  Google Scholar 

  • Katchburian E (1973) Membrane bound bodies as initiators of mineralization of dentine. J Anat 116:285–302

    PubMed  CAS  Google Scholar 

  • Katz EP, Li ST (1974) Structure and function of bone collagen fibrils. J Mol Biol 80:1-15

    Article  Google Scholar 

  • Krefting ER, Barckhaus RH, Höhling HJ, Bond P, Hosemann R (1980) Analysis of the crystal arrangement in collagen fibrils of mineralizing turkey tibia tendon. Cell Tissue Res 205:485–491

    Article  PubMed  CAS  Google Scholar 

  • Lee SL, Veis A, Glonek T (1977) Dentin phosphoprotein: An extracellular calcium-binding protein. Biochemistry 16 2971–2979

    Article  PubMed  CAS  Google Scholar 

  • Linde A, Bhown M, Butler WT (1980) Noncollageneous proteins of dentin. A reexamination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 255:5931–5942

    PubMed  CAS  Google Scholar 

  • Miller A, Parry DAD (1973) The structure and packing of microfibrils in collagen. J Mol Biol 75:441–447

    Article  PubMed  CAS  Google Scholar 

  • Miller A, Tochetti D (1981) Calculated X-ray diffraction pattern from a quasi hexagonal model for the molecular arrangement in collagen. Int J Biol Macromol 3:9–18

    Article  CAS  Google Scholar 

  • Mulrad A, Sela J, Deutsch D, Bab I (1981) Actin in extracellular matrix vesicles obtained from bone and cartilage. In: Ascenzi A, Bonucci E, DeBernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 215–220

    Google Scholar 

  • Munhoz COG, Leblond CP (1974) Deposition of calcium phosphate into dentine and enamel as shown by radioautography of sections of incisor teeth following injection of 45Ca into rats. Calcif Tissue Res 15:221–235

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Frank RM (1975) Transfer du 45Ca par autoradiographic en microscope électronique au cours de l’amélogenèse. Calcif Tissue Res 19:211–221

    Article  PubMed  CAS  Google Scholar 

  • Nakahara H, Kakei M (1984) Central darkline and carbonic anhydrase, problems relating to crystal nucleation in enamel. In: Fearnhead RW, Suga S (eds) Tooth enamel IV, Elsevier, Amsterdam New York Oxford, pp 42–46

    Google Scholar 

  • Nylen MU, Eanes ED, Omnell KA (1963) Crystal growth in rat enamel. J Cell Biol 18:109–123

    Article  PubMed  CAS  Google Scholar 

  • Perdok WG, Gustafson G (1961) X-Ray diffraction studies of the insoluble protein in mature enamel. Arch Oral Biol 4:70–75

    Article  PubMed  CAS  Google Scholar 

  • Price PA, Otsuka AS, Poser JW, Kristaponis J, Raman N (1976) Characterization of a γ-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451

    Article  PubMed  CAS  Google Scholar 

  • Price PA, Williamson MK, Otawara Y (1985) Characterization of matrix Gla protein. A new vitamin K-dependent protein associated with the organic matrix of bone. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Birmingham Alabama USA, pp 163–195

    Google Scholar 

  • Pugliarello MC, Vittur F, DeBernard B, Bonucci E, Ascenzi A (1970) Chemical modifications in osteons during calcification. Calcif Tissue Res 5:108–114

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch AL, Anderson C (1976) Biogenesis of matrix vesicles in matrix vesicles in cartilage growth plates. Fed Proc 35:112–116

    PubMed  CAS  Google Scholar 

  • Rahemtulla F, Prince CW, Butler WT (1984) Isolation and partial characterization of proteoglycans from rat incisor. Biochem J 218:877–885

    PubMed  CAS  Google Scholar 

  • Ramachandran GN (1963) The triple helical structure of collagen. In: Ramachandran GN (ed) Aspects of protein structure. Academic, London New York, pp 39–55

    Google Scholar 

  • Ramachandran GN, Kartha G (1954) Structure of collagen. Nature 174:269–279

    Article  PubMed  CAS  Google Scholar 

  • Reimer L (1962) Änderung des elektronenmikroskopischen Bildkontrastes beim Übergang amorphkristallin und flüssig-kristallin. Naturwissenschaften 49:297

    Article  Google Scholar 

  • Reith EJ (1983) A model for transcellular transport of calcium based on membrane fluidity and movement of calcium carriers within the more fluid microdomains of the plasma membrane. Calcif Tissue Int 35:129–134

    Article  PubMed  CAS  Google Scholar 

  • Reith EJ, Boyde A (1978) Histochemical and electronprobe analysis of secretory ameloblasts of developing rat molar teeth. Histochemistry 55:17–26

    Article  PubMed  CAS  Google Scholar 

  • Rich A, Crick FHC (1955) The structure of collagen. Nature 176:915

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Lowe NR, Weatherell JA (1975) Amino acid composition, distribution and origin of ‘Tuft’ protein in human and bovine dental enamel. Arch Oral Biol 20:29–42

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Briggs HD, Atkinson PJ, Weatherell J A (1979) Matrix and mineral changes in developing enamel. J Dent Res 58 B: 871–880

    Google Scholar 

  • Robinson C, Weatherell J A, Höhling HJ (1983) Formation and mineralization of dental enamel. Trends Biochem Sciences 8:284–287

    Article  CAS  Google Scholar 

  • Rönnholm E (1962) An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. J Ultrastruct Res 6:229–248

    Article  PubMed  Google Scholar 

  • Sasaki T, Garant PR (1986) Ultracytochemical demonstration of ATP dependent Ca-pump in ameloblasts of rat incisor enamel organ. Calcif Tissue Int 39:86–96

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Garant PR (1987) Calmodulin blocker inhibits Ca+ +-ATPase activity in secretory ameloblasts of rat incisor. Cell Tissue Res 248:103–110

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Takagi T, Suzuki M, Baba T, Minegishi K (1984) Aminoacid sequence of developing bovine enamel protein. In: Fearnhead RW, Suga S (eds) Tooth enamel IV, Elsevier Science Publishers, Amsterdam New York Oxford, pp 151–155

    Google Scholar 

  • Scherft JP, Groot CG (1981) The development of matrix vesicles into bone nodules, studied with colloidal thorium dioxide. In: Ascenzi A, Bonucci E, DeBernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 173–177

    Google Scholar 

  • Scott JE, Haigh H (1985) Proteoglycan-type I collagen fibril interactions in bone and noncalcifying connective tissues. Biosci Rep 5:71–81

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Fracassini A, Smith JW (1966) Observations on the morphology of the protein-polysaccharide complex of bovine nasal cartilage and its relationship to collagen. Proc R Soc Lond [Biol] 165:440–449

    Article  CAS  Google Scholar 

  • Seyer J, Glimcher MJ (1969) The amino-acid sequence of two O-phosphoserine containing tripeptides isolated from the organic matrix of embryonic bovine enamel. Biochem Biophys Acta 181:410–418

    PubMed  CAS  Google Scholar 

  • Sisca RF, Provenza DV (1972) Initial dentine formation in human deciduous teeth. Calcif Tissue Res 9:1–5

    Article  PubMed  CAS  Google Scholar 

  • Smith BJ (1968) Molecular pattern in native collagen. Nature 219:157–158

    Article  PubMed  CAS  Google Scholar 

  • Stein RM, Hsu HHT, Anderson HC (1981) Protein profiles of isolated fetal calf and rachitic rat matrix vesicles by polyacrylamide gel eletrophoresis. In: Ascenzi A, Bonucci E, DeBernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 117–122

    Google Scholar 

  • Stetler-Stevenson WG, Veis A (1987) Bovine dentin phosphoryn: Calcium ion binding properties of a high molecular weight preparation. Calcif Tissue Int 40:97–102

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Torchia OA, Conn KM (1979) Enamel matrix: Structural proteins. J Dent Res 58B:773–778

    Google Scholar 

  • Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    PubMed  CAS  Google Scholar 

  • Thiele H (1964) Ordnung von Fadenmolekülen durch Ionendiffusion, ein Prinzip der Strukturbildung. Protoplasma 58:318–341

    Article  CAS  Google Scholar 

  • Thyberg J, Friberg U (1978) The lysosomal system in endochondral growth. In: Graumann W, Lojda Z, Pearse AGE, Schiebler TH (eds) Progress in histochemistry and cytochemistry 10, no 4. Fischer, Stuttgart

    Google Scholar 

  • Traub W, Yonath A, Segal DM (1969) On the molecular structure of collagen. Nature 221:914-917

    Article  PubMed  CAS  Google Scholar 

  • Trus BL, Piez KA (1980) Compressed microfibril models of the native collagen fibril. Nature 286:300–301

    Article  PubMed  CAS  Google Scholar 

  • Väänänen HK, Korhonen LK (1981) Phosphatases of matrix vesicles. In: Ascenzi A, Bonucci E, DeBernard B (eds) Matrix vesicles. Wichtig Editore, Milano, pp 111–116

    Google Scholar 

  • Van Iren F, van Essen-Joolen L, van der Duyn Schouten P, Boers-van der Sluijs P, De Bruijn WC (1979) Sodium and calcium localization in cells and tissues by precipitation with antimonate: a quantitative study. Histochemistry 63:273–294

    Article  PubMed  Google Scholar 

  • Von der Mark K, Wendt P, Rexrodt F, Kühn K (1970) Direct evidence for a correlation between amino-acid sequence and cross striation pattern of collagen. FEBS Lett 11:105–108

    Article  PubMed  Google Scholar 

  • Warner GP, Hubbard HL, Lioyd GC, Wuthier RE (1983) 32Pi and 45Ca metabolism by matrix vesicle enriched microsomes prepared from chicken epiphyseal cartilage by isosmotic percoll density gradient fractionation. Calcif Tissue Int 35:327–338

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky H, Bai P, Nanci A (1987) Analysis of crystallite shape in rat incisor enamel. Anat Rec 218:380–390

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their function in biomineralization. Philos Trans R Soc Lond [Biol] 304:421–438

    Article  Google Scholar 

  • Weinstock M, Leblond LP (1973) Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentine of the rat incisor. J Cell Biol 56:838–845

    Article  PubMed  CAS  Google Scholar 

  • Weiss MP, Voegel JC, Frank RM (1981) Enamel crystallite growth: width and thickness study related to the possible presence of octocalcium phosphate during amelogenesis. J Ultrastruct Res 76:286–292

    Article  PubMed  CAS  Google Scholar 

  • Wuthier RE (1982) A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Rel Res 169:219–242

    CAS  Google Scholar 

  • Wuthier RE, Majeska RJ, Collins GM (1977) Biosynthesis of matrix vesicles in epiphyseal cartilage. I. In vivo incorporation of 32P orthophosphate into phospholipids of chondrocyte, membrane and matrix vesicle fractions. Calcif Tissue Res 23:135–139

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Höhling, H.J. (1989). Special Aspects of Biomineralization of Dental Tissues. In: Teeth. Handbook of Microscopic Anatomy, vol 5 / 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83496-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83496-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83498-1

  • Online ISBN: 978-3-642-83496-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics