Skip to main content

Introduction: Potential of Cellulosic Ethanol

  • Chapter
  • First Online:
Lignocellulose Conversion

Abstract

Conversion of lignocellulosic biomass is emerging as one of the most important technologies for sustainable production of renewable fuels and chemicals due to its widespread availability, large quantity, non-competitiveness with food supply, potential as platform for green chemicals, and high mitigation effects on GHG emissions. The process for cellulosic ethanol production by enzymatic saccharification and fermentation consists of pretreatments exposing plant cell wall polysaccharides, production of reducing sugars with a (hemi) cellulolytic enzyme cocktail, and fermentation of the sugars with ethanologenic microorganisms. Simultaneous saccharification and co-fermentation (SSCF) and consolidate bioprocess (CBP) have been studied as cost-effective integrated processes for bioethanol production. For this purpose, ethanologenic microorganisms have been engineered to co-utilize hexoses and pentoses at a similar rate and secrete or display hydrolases on the cell surfaces. In this chapter, the role of bioethanol in sustainable society, its potential as new platform chemicals, and the current technological developments and future prospects in bioethanol research are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192

    Article  CAS  Google Scholar 

  • Argonne National Laboratory (2012) GREET model. http://greet.es.anl.gov/

  • Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploit 25:195–218

    Article  CAS  Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl Environ Microbiol 69:4144-4150

    Google Scholar 

  • Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC (2013) Comparison of two lytic polysaccharide monooxygenases (GH61) from Podospora anserina reveals differences upon cello-oligosaccharides oxidation. Appl Environ Microbiol 79:488–496

    Google Scholar 

  • Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb Technol 40:754–762

    Article  Google Scholar 

  • Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sustain Energy Rev 16:4638–4650

    Google Scholar 

  • Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandel AK, da Silva SS, Singh OV (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: . Santos Bernardes MAD (ed) Biofuel production-recent developments and prospects, In Tech, Rijeka, pp 225–246

    Google Scholar 

  • Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66

    Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) d-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    Article  CAS  Google Scholar 

  • Den Haan R, Van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33:620–628

    Article  Google Scholar 

  • Dunn JB, Eason J, Wang MQ (2011) Updated sugarcane and switchgrass parameters in the GREET model (http://greet.es.anl.gov/publication-updated sugarcane switchgrass params)

  • Eckard AD, Muthukumarappan K, Gibbons W (2012) Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer. J Biomed Biotechnol 2012:745181

    Article  PubMed  Google Scholar 

  • Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mole Syst Biol 9:641

    Google Scholar 

  • Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW (2012) Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109:13260–13265

    Article  PubMed  CAS  Google Scholar 

  • Gama FM, Mota M (1997) Enzymatic hydrolysis of cellulose (I): relationship between kinetics and physico-chemical parameters. Biocatal Biotransform 15:221–236

    Article  CAS  Google Scholar 

  • Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835

    Article  PubMed  CAS  Google Scholar 

  • GREET 1 (2009) The greenhouse gases, regulated emissions, and energy use in transportation (Greet) model. Version 1.8b, Argonne National Laboratory, Lemont

    Google Scholar 

  • Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410

    Article  CAS  Google Scholar 

  • Han J, Elgowainy A, Palou-Rivera I, Dunn JB, Wang MQ (2011) Well-to-wheels analysis of fast pyrolysis pathways with GREET Argonne National Laboratory Report ANL/ESD/11-8

    Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  PubMed  CAS  Google Scholar 

  • Ilmen M, Thrane C, Penttilä M (1996) The glucose repressor gene cre1 of Trichoderma: Isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  CAS  Google Scholar 

  • Jeffries TW, Davis BP, Dahn K, Cho JY (1996) Genetic engineering of xylose fermentation in yeasts. USDA http://www2.biotech.wisc.edu/jeffries/bioprocessing/xoferm/xoferm.html. Accessed 26 Feb 2010

  • Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mole Biol Rev 6(8):172–182

    CAS  Google Scholar 

  • Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae, Microb Cell Fact 6: 5, 1–10

    Google Scholar 

  • Kawakubo TS, Karita Y, Araki S, Watanabe M, Oyadomari R, Takada F, Tanaka K, Abe T, Watanabe Y, Honda T (2010) Watanabe, analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol Bioeng 105:499–508

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Akahoshi T, Okamoto K, Yanase H (2012) Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae. Appl Microbiol Biotechnol 96:1093–1104

    Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015

    Article  PubMed  CAS  Google Scholar 

  • Larsen U, Johansen T, Schramm J (2009) IEA implementing agreement on advanced motor fuels, ethanol as a fuel for road transportation, Main Report, EFP06. http://www.iea-amf.vtt.fi/pdf/annex35report_final.pdf

  • Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Develop 10:109y fo

    Google Scholar 

  • Linger JG, Adney WS, Darzins Al (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76:6360–6369

    Article  PubMed  CAS  Google Scholar 

  • Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman KG (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J Ind Ecol 13:58–74

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • MacLean H, Spatari S (2009) The contribution of enzymes and process chemicals to the life cycle of ethanol. Environ Res Lett 4:014001

    Article  Google Scholar 

  • Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Biores Technol 108:128–133

    Google Scholar 

  • McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 77–79:649–665

    Article  PubMed  Google Scholar 

  • Monti A, Lorenzo B, Zatta A, Zegada-Lizarazu W (2012) The contribution of switchgrass in reducing GHG emissions GCB. Bioenergy 4:420–434

    CAS  Google Scholar 

  • Mu D, Seager T, Rao PS, Zhao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manag 46:565–578

    Article  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    PubMed  CAS  Google Scholar 

  • Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, Nakatani M, Shimizu S, Ueda M (2012) Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl Microbiol Biotechnol 94:939–948

    Article  PubMed  CAS  Google Scholar 

  • Nakari-Setala T, Paloheimo M, Kallio J, Vehmaanpera J, Penttila M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860

    Article  PubMed  CAS  Google Scholar 

  • Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  PubMed  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Current Opin Biotechnol 23:396–405

    Article  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  PubMed  CAS  Google Scholar 

  • Penttilä PA, Várnai A, Leppänen, Peura M, Kallonen A, Jääskeläinen P, Lucenius J, Ruokolainen J, Siika-Aho M, Viikari L, Serimaa R (2010) Changes in submicrometer structure of enzymatically hydrolysed microcrystalline cellulose. Biomacromolecules 11:1111–1117

    Google Scholar 

  • Petrova P, Ivanova V (2010) Perspectives for the production of bioethanol from lignocellulosic materials. Biotechnol & Biotechnol EQ

    Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084

    Google Scholar 

  • Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood- Study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108:2823–2834

    Article  PubMed  CAS  Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, Nelson R (2003) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7:117–146

    Article  CAS  Google Scholar 

  • Stehfest E, Bouwman AF (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data modelling of global annual emissions. Nutr Cycl Agroecosyst 74:207

    Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylosefermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131

    Article  PubMed  Google Scholar 

  • Tu M, Pan X, Saddler JN (2009) Adsorption of cellulase on cellulolytic enzyme lignin from Lodgepole pine. J Agric Food Chem 57:7771–7778

    Article  PubMed  CAS  Google Scholar 

  • Van Zyl WH, Lynd LR, Den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    PubMed  Google Scholar 

  • Viikari L, Várnai A, LeCostaouec T, Siika-aho M (2012) Cellulases without carbohydrate-binding modules act efficiently in low water containing hydrolytic systems. Abstracts of lignobiotech II, 2nd symposium on biotechnology applied to lignocellulses, p 8

    Google Scholar 

  • Wang M (2005) The debate on energy and greenhouse gas emission impacts of fuel ethanol. www.transportation.anl.gov/pdfs/TA/347.pdf

  • Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Han J, Haq Z, Tyner W, Wu M, Elgowainy A (2011) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35:1885–1896

    Google Scholar 

  • Wang Z, Dunn JB, Wang MQ (2012a) GREET model Miscanthus parameter development. http://greet.es.anl.gov/publication-micanthus-params. Argonne National Laboratory, Argonne

  • Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7(4):0459050

    Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S (2004) Top value added chemicals from biomass volume I—results of screening for potential candidates from sugars and synthesis gas, energy efficiency and renewable energy, U.S. Department of Energy (2004)

    Google Scholar 

  • Whitaker J, Ludley KE, Rowe R, Taylor G, Howard DC (2010) Sources of variability in greenhouse gas and energy balances for biofuel production: a systematic review. GCB Bioenergy 2:99–112

    CAS  Google Scholar 

  • Wingren A, Galbe M, Zachhi G (2003) Techno-economic evaluation of producing ethanol from Softwood: comparison of SSF and SHF and Identification of bottle necks. Biotechnol Prog 19:1086–1093

    Google Scholar 

  • Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga T, Kojima M, Okamoto K (2012) Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 94:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman C (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotecnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

  • Zhang Y, McKechnie J, MacLean HL (2010) Environmental life cycle assessment of lignocellulose-to-bioalcohol production. In: Waldron K (ed) Bioalcohol production Biochemical conversion of lignocellulosic biomass. Woodhead Publishing Ltd., Oxford, pp 365–390

    Google Scholar 

  • Zhou H, Cheng J, Wanga BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watanabe, T. (2013). Introduction: Potential of Cellulosic Ethanol. In: Faraco, V. (eds) Lignocellulose Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37861-4_1

Download citation

Publish with us

Policies and ethics