Skip to main content
Log in

Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108:777–785

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Colladovides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Karkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol 89:1289–1303

    Article  CAS  Google Scholar 

  • Conway T, Sewell GW, Ingram LO (1987) Glycelaldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region. J Bacteriol 169:5653–5662

    CAS  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470

    CAS  Google Scholar 

  • Fu N, Paul P (2008) Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol 24:1091–1097

    Article  CAS  Google Scholar 

  • Jeon YJ, Svenson CJ, Rogers PL (2005) Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol Lett 244:85–92

    Article  CAS  Google Scholar 

  • Jeon YJ, Xun Z, Rogers PL (2010) Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol 51:518–524

    Article  CAS  Google Scholar 

  • Kim IS, Barrow KD, Rogers PL (2000) Kinetics and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4 (pZB5). Appl Environ Microbiol 66:186–193

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (2002) Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Appl Biochem Biotechnol 98:429–448

    Article  Google Scholar 

  • Li X, Kim TH, Nghiem NP (2010) Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technol 101:5910–5916

    Article  CAS  Google Scholar 

  • Lui TJ, Lin L, Sun ZL, Hu RF, Liu SJ (2010) Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot-water wood extract hydrolysate as substrate. Biotechnol Adv 28:602–608

    Article  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethnaol. Curr Opin Biotech 20:372–380

    Article  CAS  Google Scholar 

  • Misawa N, Okamoto T, Nakamura K, Yanase H, Tonomura K (1986) Construction of a new shuttle vector for Zymomonas mobilis. Agric Biol Chem 50:3201–3203

    Article  CAS  Google Scholar 

  • Mohagheghi A, Dowe N, Schell D, Chou YC, Eddy C, Zhang M (2004) Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 26:321–325

    Article  CAS  Google Scholar 

  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics, and the role of glucokinase in glucose transport. Mol Microbiol 15:795–802

    Article  CAS  Google Scholar 

  • Perlack R, Wright L, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DOE/GO-102995-2136, ORNL/TM-2005/66 Oak Ridge National Laboratory, Oak Ridge.

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  Google Scholar 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    CAS  Google Scholar 

  • Tonomura K, Okamoto T, Yasui M, Yanase H (1986) Shuttle vectors for Zymomonas mobilis. Agric Biol Chem 50:805–808

    Article  CAS  Google Scholar 

  • Vertes AA, Inui M, Yukawa H (2006) Implementing biofuels on a global scale. Nat Biotechnol 24:761–764

    Article  CAS  Google Scholar 

  • Weber C, Farwick A, Benish F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1302–1315

    Article  Google Scholar 

  • Weisser P, Kramer R, Sprenger GA (1996) Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 62:4155–4161

    CAS  Google Scholar 

  • Yamada T, Fatigati MA, Zhang M (2002) Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol technology. Appl Biochem Biotechnol 98–100:899–907

    Article  Google Scholar 

  • Yanase H, Fujimoto J, Maeda M, Okamoto K, Kita K, Tonomura K (1998) Expression of the extracellular levansucrase and invertase genes from Zymomonas mobilis in Escherichia coli cells. Biosci Biotechnol Biochem 62:1802–1805

    Article  CAS  Google Scholar 

  • Yanase H, Kato N, Tonomura K (1994) Strain improvement of Zymomonas mobilis for ethanol production. In: Murooka Y, Imanaka T (eds) Recombinant microbes for industrial and agricultural applications. Marcel Dekker, New York, pp 723–739

    Google Scholar 

  • Yanase H, Kotani T, Tonomura K (1986) Transformation of Zymomonas mobilis with plasmid DNA. Agric Biol Chem 50:3139–3144

    Article  CAS  Google Scholar 

  • Yanase H, Sato D, Yamamoto K, Matsuda S, Yamamoto S, Okamoto K (2007) Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Appl Environ Microbiol 73:2592–2599

    Article  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the New Energy and Industrial Technology Development Organization (NEDO), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Yanase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanase, H., Miyawaki, H., Sakurai, M. et al. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis . Appl Microbiol Biotechnol 94, 1667–1678 (2012). https://doi.org/10.1007/s00253-012-4094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4094-0

Keywords

Navigation