Skip to main content

Biofuels from Microalgae: Biohydrogen

  • Chapter
  • First Online:
Energy from Microalgae

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Rapid industrialization and urbanization are mainly responsible for the energy crisis, environmental pollution and climate change. In addition, depletion of the fossil fuels is a major concern now. To confront these problems, it is essential to produce energy from sustainable and renewable energy sources. Hydrogen is widely considered as a clean and efficient energy carrier for the future because it does not produce carbon-based emission and has the highest energy density among any other known fuels. Due to the environmental and socioeconomic limitation associated with conventional processes for the hydrogen production, new approaches of producing hydrogen from biological sources have been greatly encouraged. From the perspective of sustainability, microalgae offer a promising source and have several advantages for the biohydrogen production. Microalgae are characterized as high rate of cell growth with superior photosynthetic efficiency and can be grown in brackish or wastewater on non-arable land. In recent years, biohydrogen production from microalgae via photolysis or being used as substrate in dark fermentation is gaining considerable interest. The present chapter describes the different methods involved in hydrogen production from microalgae. Suitability of the microalgae as a feedstock for the dark fermentation is discussed. This review also includes the challenges faced in hydrogen production from microalgae as well as the genetic and metabolic engineering approaches for the enhancement of biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almon, H., & BÓ§ger, P. 1988. Nitrogen and hydrogen metabolism: induction and measurement. Methods in Enzymology, Academic Press, 167.

    Google Scholar 

  • Baebprasert, W., Lindblad, P., & Incharoensakdi, A. (2010). Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. International Journal of Hydrogen Energy, 35(13), 6611–6616.

    Article  Google Scholar 

  • Batista, A. P., Moura, P., Marques, P. A. S. S., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537–543.

    Article  Google Scholar 

  • Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.

    Article  Google Scholar 

  • Bernát, G., Waschewski, N., & Rögner, M. (2009). Towards efficient hydrogen production: The impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Research, 99(3), 205–216.

    Article  Google Scholar 

  • Borodin, V. B., Tsygankov, A. A., Rao, K. K., & Hall, D. O. (2000). Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and Bioengineering, 69(5), 478–485.

    Article  Google Scholar 

  • Burrows, E. H., Chaplen, F. W. R., & Ely, R. L. (2008). Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. International Journal of Hydrogen Energy, 33(21), 6092–6099.

    Article  Google Scholar 

  • Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.

    Article  Google Scholar 

  • Cheng, J., Liu, Y., Lin, R., Xia, A., Zhou, J., & Cen, K. (2014). Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake. International Journal of Hydrogen Energy, 39(33), 18793–18802.

    Article  Google Scholar 

  • Cheng, J., Xia, A., Liu, Y., Lin, R., Zhou, J., & Cen, K. (2012). Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. International Journal of Hydrogen Energy, 37(18), 13330–13337.

    Article  Google Scholar 

  • Das, D., & VeziroÄŸlu, T. N. (2001). Hydrogen production by biological proceses: A survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  Google Scholar 

  • Das, D., Khanna, N., & Dasgupta, C. N. (2014). Biohydrogen production: Fundamentals and technology advances. CRC Press, Taylor and Francis Group, LLC.

    Book  Google Scholar 

  • Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., et al. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. Journal of Biotechnology, 131(1), 27–33.

    Article  Google Scholar 

  • Eroglu, E., & Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. Bioresource Technology, 102(18), 8403–8413.

    Article  Google Scholar 

  • Fernández-Sevilla, J. M., Acién-Fernández, F. G., & Molina-Grima, E. (2014). Microbial bioenergy: Hydrogen production. Advances in Photosynthesis and Respiration, 38, 291–320.

    Article  Google Scholar 

  • Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., et al. (2003). Expression of two [Fe] -hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. European Journal of Biochemistry, 270, 2750–2758.

    Article  Google Scholar 

  • Gaffron, H., & Rubin, J. (1942). Fermentatinve and photochemical production of hydrogen in algae. The Journal of General Physiology, 26(2), 219–240.

    Article  Google Scholar 

  • Genkov, T., Meyer, M., Griffiths, H., & Spreitzer, R. J. (2010). Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: Engineered rbcS cDNA for expression in Chlamydomonas. Journal of Biological Chemistry, 285(26), 19833–19841.

    Article  Google Scholar 

  • Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., et al. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.

    Article  Google Scholar 

  • Ghirardi, M. L., Togasaki, R. K., & Seibert, M. (1997). Oxygen sensitivity of Algal H2-production. Applied Biochemistry and Biotechnology, 63–65, 141–151.

    Article  Google Scholar 

  • Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., et al. (2000). Microalgae: A green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.

    Article  Google Scholar 

  • Ghosh, S., Roy, S., & Das, D. (2017). Enhancement in lipid content of Chlorella sp. MJ11/11 from the spent medium of thermophilic biohydrogen production process. Bioresource Technology, 223, 219–226.

    Article  Google Scholar 

  • Greenbaum, E. (1982). Photosynthetic hydrogen and oxygen production: Kinetic studies. Science (New York), 215(4530), 291–293.

    Article  Google Scholar 

  • Happe, T., Hemschemeier, A., Winkler, M., & Kaminski, A. (2002). Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems? Trends in Plant Science, 7(6), 246–250.

    Article  Google Scholar 

  • Happe, T., Schütz, K., & Böhme, H. (2000). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 182(6), 1624–1631.

    Article  Google Scholar 

  • Harun, R., Yip, J. W. S., Thiruvenkadam, S., Ghani, W. A. W. A. K., Cherrington, T., & Danquah, M. K. (2014). Algal biomass conversion to bioethanol-a step-by-step assessment. Biotechnology Journal, 9(1), 73–86.

    Article  Google Scholar 

  • Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2015). Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal, 262, 939–945.

    Article  Google Scholar 

  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.

    Article  Google Scholar 

  • Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate rich micraolgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  Google Scholar 

  • Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244–260.

    Article  Google Scholar 

  • Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., & Blánquez, P. (2016). Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Research, 19, 184–188.

    Article  Google Scholar 

  • Khan, M. I., Lee, M. G., Shin, J. H., & Kim, J. D. (2017). Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Expr, 7(19), 1–9.

    Google Scholar 

  • Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. Journal of Biological Engineering, 6(19), 1–11.

    Google Scholar 

  • Kim, D.-H., & Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresource Technology, 102(18), 8423–8431.

    Article  Google Scholar 

  • Kosourov, S., Makarova, V., Fedorov, A. S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2005). The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynthesis Research, 85, 295–305.

    Article  Google Scholar 

  • Kosourov, S., Tsygankov, A., Seibert, M., & Ghirardi, M. L. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnology and Bioengineering, 78(7), 731–740.

    Article  Google Scholar 

  • Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.

    Article  Google Scholar 

  • Kumar, K., Roy, S., & Das, D. (2013). Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresource Technology, 145, 116–122.

    Article  Google Scholar 

  • Lakaniemi, A. M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels, 4(1), 34.

    Article  Google Scholar 

  • Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31(5), 659–667.

    Article  Google Scholar 

  • Lay, C. H., Sen, B., Chen, C. C., Wu, J. H., Lee, S. C., & Lin, C. Y. (2013). Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 135, 610–615.

    Article  Google Scholar 

  • Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.

    Article  Google Scholar 

  • Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., & Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. International Journal of Hydrogen, 27, 1271–1281.

    Article  Google Scholar 

  • Liu, C. H., Chang, C. Y., Cheng, C. L., Lee, D. J., & Chang, J. S. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy, 37(20), 15458–15464.

    Article  Google Scholar 

  • Márquez-Reyes, L. A., Sánchez-Saavedra, M. D. P., & Valdez-Vazquez, I. (2015). Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. International Journal of Hydrogen Energy, 40(23), 7291–7300.

    Article  Google Scholar 

  • Markou, G., Angelidaki, I., & Georgakakis, D. (2012a). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.

    Article  Google Scholar 

  • Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012b). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.

    Article  Google Scholar 

  • Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.

    Article  Google Scholar 

  • McKinlay, J. B., & Harwood, C. S. (2010). Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology, 21(3), 244–251.

    Article  Google Scholar 

  • Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., & Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green Alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–135.

    Article  Google Scholar 

  • Mikheeva, L. E., Schmitz, O., Shestakov, S. V., & Bothe, H. (1995). Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Natutforsch, 50, 505–510.

    Google Scholar 

  • Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342–348.

    Article  Google Scholar 

  • Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., et al. (1997). Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conservation Management, 38, 533–537.

    Article  Google Scholar 

  • Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J. P., et al. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnology Advances, 32(5), 934–951.

    Article  Google Scholar 

  • Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.

    Article  Google Scholar 

  • Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56.

    Article  Google Scholar 

  • Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., & McDowall, A., et al. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802–814.

    Article  Google Scholar 

  • Nayak, B. K., Roy, S., & Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.

    Article  Google Scholar 

  • Nguyen, T. A. D., Kim, K. R., Nguyen, M. T., Kim, M. S., Kim, D., & Sim, S. J. (2010). Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 35(23), 13035–13040.

    Article  Google Scholar 

  • Nobre, B. P., Villalobos, F., Barragán, B. E., Oliveira, A. C., Batista, A. P., Marques, P. A. S. S., et al. (2013). A biorefinary from Nannchloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftcover biomass. Bioresource Tecnology, 135, 128–136.

    Article  Google Scholar 

  • Nyberg, M., Heidorn, T., & Lindblad, P. (2015). Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 δhupW examined in a flat panel photobioreactor system. Journal of Biotechnology, 215, 35–43.

    Article  Google Scholar 

  • Ortigueira, J., Alves, L., Gouveia, L., & Moura, P. (2015). Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel, 153, 128–134.

    Article  Google Scholar 

  • Oey, M., Sawyer, A. L., Ross, I. L., & Hankamer, B. (2016). Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal, 14(7), 1487–1499.

    Article  Google Scholar 

  • Vignais, P. M., & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Current Issues in Molecular Biology, 6, 159–188.

    Google Scholar 

  • Pancha, I., Chokshi, K., & Mishra, S. (2015). Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 179, 565–572.

    Article  Google Scholar 

  • Patel, V. K., Maji, D., Pandey, S. S., Rout, P. K., Sundaram, S., & Kalra, A. (2016). Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Research, 16, 36–45.

    Article  Google Scholar 

  • Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science (New York), 282(5395), 1853–1858.

    Article  Google Scholar 

  • Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., et al. (2015). [FeFe] - and [NiFe] -hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta, 1853, 1350–1369.

    Article  Google Scholar 

  • Polle, J. E. W., Kanakagiri, S., Jin, E., Masuda, T., & Melis, A. (2002). Truncated chlorophyll antenna size of the photosystems—A practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy, 27(11–12), 1257–1264.

    Article  Google Scholar 

  • Prajapati, S. K., Bhattacharya, A., Malik, A., & Vijay, V. K. (2015). Pretreatment of algal biomass using fungal crude enzymes. Algal Research, 8, 8–14.

    Article  Google Scholar 

  • Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.

    Article  Google Scholar 

  • Randt, C., & Senger, H. (1985). Participation of the two photosystems in light dependent hydrogen evolution in Scenedesmus obliquus. Photochemistry and Photobiology, 42(5), 553–557.

    Article  Google Scholar 

  • Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12(1), 148.

    Article  Google Scholar 

  • Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.

    Article  Google Scholar 

  • Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44, 20–36.

    Article  Google Scholar 

  • Shi, X. Y., & Yu, H. Q. (2016). Simultaneous metabolism of benzoate and photobiological hydrogen production by Lyngbya sp. Renewable Energy, 95, 474–477.

    Article  Google Scholar 

  • Stripp, S. T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K. A., Haumann, M., et al. (2009). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17331–17336.

    Article  Google Scholar 

  • Su, H. Y., Lee, T. M., Huang, Y. L., Chou, S. H., Wang, J. B., Lin, L. F., et al. (2011). Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Botanical Studies, 52, 265–275.

    Google Scholar 

  • Taikhao, S., Junyapoon, S., Incharoensakdi, A., & Phunpruch, S. (2013). Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. Journal of Applied Phycology, 25(2), 575–585.

    Article  Google Scholar 

  • Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., & Lindblad, P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiology and Molecular Biology Reviews, 66(1), 1–20.

    Article  Google Scholar 

  • Tiwari, A., & Pandey, A. (2012). Cyanobacterial hydrogen production—A step towards clean environment. International Journal of Hydrogen Energy, 37(1), 139–150.

    Article  Google Scholar 

  • Torzillo, G., Scoma, A., Faraloni, C., Ena, A., & Johanningmeier, U. (2009). Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. International Journal of Hydrogen Energy, 34(10), 4529–4536.

    Article  Google Scholar 

  • Torzillo, G., Scoma, A., Faraloni, C., & Giannelli, L. (2015). Advances in biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Critical reviews in Biotecnology, 35(4), 485–496.

    Article  Google Scholar 

  • Torzillo, G., & Seibert, M. 2013. Hydrogen production by Chlamydomonas reinhardtii. In Handbook of microalgal culture: Applied phycology and biotechnology, pp. 417–432.

    Chapter  Google Scholar 

  • Troshina, O., Serebryakova, L., Sheremetieva, M., & Lindblad, P. (2002). Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. International Journal of Hydrogen Energy, 27(11–12), 1283–1289.

    Article  Google Scholar 

  • Tsygankov, A. A., Fedorov, A. S., Kosourov, S. N., & Rao, K. K. (2002). Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 80(7), 777–783.

    Article  Google Scholar 

  • Tsygankov, A. A., Kosourov, S. N., Tolstygina, I. V., Ghirardi, M. L., & Seibert, M. (2006). Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy, 31, 1574–1584.

    Article  Google Scholar 

  • Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2015). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218.

    Article  Google Scholar 

  • Wang, J., & Yin, Y. (2017). Bihydrogen production from organic wastes. In Green energy and technology (pp. 123–195), Springer Nature.

    Google Scholar 

  • Wang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., & Li, S. et al. (2017). Current advances on fermantative biobutanol production using third generation feedstock. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2017.06.001.

  • Wu, S., Huang, R., Xu, L., Yan, G., & Wang, Q. (2010). Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. Journal of Biotechnology, 146, 120–125.

    Article  Google Scholar 

  • Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Zhou, J., et al. (2014). Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Applied Energy, 120, 23–30.

    Article  Google Scholar 

  • Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., & Cen, K. (2013). Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresource Technology, 138, 204–213.

    Article  Google Scholar 

  • Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., et al. (2015). Fermentative hydrogen production using algal biomass as feedstock. Renewable and Sustainable Energy Reviews, 51, 209–230.

    Article  Google Scholar 

  • Xu, Q., Yooseph, S., Smith, H.O., Venter, C.J. 2005. Development of a novel recombinant cyanobacterial system for hydrogen production from water. Paper presented at Genomics: GTL Program Projects, Rockville.

    Google Scholar 

  • Yang, Z., Guo, R., Xu, X., Fan, X., & Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.

    Article  Google Scholar 

  • Yu, J., & Takahashi, P. (2007). Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Trends in Applied Microbiology, 1, 79–89.

    Google Scholar 

  • Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61(1), 235–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H., Das, D. (2018). Biofuels from Microalgae: Biohydrogen. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics