Skip to main content

Photobioreactors Design for Hydrogen Production

  • Chapter
  • First Online:
Microbial BioEnergy: Hydrogen Production

Summary

The photobiological production of H2 is a subject that has been studied with great intensity over the past 50 years using different approaches; direct or indirect biophotolysis (green algae and cyanobacteria) and photo-fermentations (photosynthetic bacteria). The number of publications on the subject is impressive. However, hardly any of the production methods proposed have progressed beyond the laboratory, and the photobioreactors (PBR) used to carry out the processes are still bench-top scale laboratory devices. The scale up of some of the proposed PBR to carry out the process outdoor using full solar radiation is just beginning and the existing data are too scarce.

This chapter is mainly addressing the major issues in the design and scale up of photobioreactors (PBR) for the eventual photobiological production of H2 when using an envisaged two-stage scheme. A first one in which microalgae are cultivated in large open ponds to produce microalgae biomass with a high C/N ratio; then, by changing the physiological conditions, a second anoxygenic step to produce hydrogen in closed PBRs. The different designs currently used for practical microalgae mass culture are reviewed, identifying their characteristic parameters. The major operational variables impacting on PBR performances are also highlighted, as well as the challenges associated with the PBR design and scale up. Finally, the bottlenecks for the scaling up of the different technologies and thus of the photobiological H2 production are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién-Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E (1997) A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701–714

    Article  Google Scholar 

  • Acién-Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616

    Article  Google Scholar 

  • Acién-Fernández FG, Fernández Sevilla JM, Sánchez Perez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • Acién-Fernández FG, Fernández Sevilla JM, Magán JJ, Molina Grima E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  Google Scholar 

  • Acién-Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Principles of photobioreactor design. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Grutier, Göttingen, pp 151–179

    Google Scholar 

  • Adessi A, Torzillo G, Baccetti E, De Philippis R (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrog Energy 37:8840–8849

    Article  CAS  Google Scholar 

  • Akkerman I, Jansen M, Rocha J, Wijjfels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Antal T, Krendeleva T, Laurinavichene T, Makarova V, Ghirardi M, Rubin A, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  CAS  PubMed  Google Scholar 

  • Azov Y, Shelef G (1982) Operation of high-rate oxidation ponds: theory and experiments. Water Res 16:1153–1160

    Article  CAS  Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 228:979–987

    Article  Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  CAS  Google Scholar 

  • Berberoglu H, Jay J, Pilon L (2008) Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. Int J Hydrog Energy 33:1172–1184

    Article  CAS  Google Scholar 

  • Boran E, Özgür E, van der Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35

    Article  CAS  Google Scholar 

  • Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012) Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. J Clean Prod 3:150–157

    Article  Google Scholar 

  • Brindley C, Garcia-Malea MC, Acién-Fernández FG, Fernández Sevilla JM, García Sánchez JL, Molina Grima E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87:723–733

    Article  Google Scholar 

  • Camacho Rubio F, Molina Grima E, Valdés Sanz F, Andújar Peral JM (1991) Influence of operational and physical variables on interfacial area determination. AIChE J 37:1196–1204

    Article  Google Scholar 

  • Camacho Rubio F, Acién-Fernández FG, Sánchez Pérez JA, García Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Camacho FG, Molina Grima EM, Mirón AS, Pascual VG, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb Technol 29:602–610

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Raceways-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Grutier, Göttingen, pp 113–146

    Google Scholar 

  • Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Doucha J, Livansky K, Kostelnik K (1996) Thin-layer microalgal culture technology. Abstracts of the 7th international conference of applied. Algology, Knysna, South Africa, p 32

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  PubMed  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  CAS  PubMed  Google Scholar 

  • García Camacho F, Contreras A, Acién-Fernández FG, Fernández JM, Molina Grima E (1999) Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzyme Microb Technol 24:164–172

    Article  Google Scholar 

  • Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37:16951–16961

    Article  CAS  Google Scholar 

  • Giannelli L, Scoma A, Torzillo G (2009) Interplay between light intensity, chlorophyll concentration and culture mixing on the hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures grown in laboratory photobioreactors. Biotechnol Bioeng 104:76–90

    Article  CAS  PubMed  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hemshemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  PubMed  Google Scholar 

  • Incropera FP, Thomas JF (1978) A model for solar radiation conversion to algae in a shallow pond. Sol Energy 20:157–165

    Article  Google Scholar 

  • James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comp Biol 17:895–906

    Article  CAS  Google Scholar 

  • Jiménez C, Cossío BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kawase Y, Moo-Young M (1990) Mathematical models for design of bioreactors: applications of Kolmogoroff’s theory of isotropic turbulence. Chem Eng J 43:B19–B41

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen production by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy 5:659–667

    Article  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986) High algal production rates achieved in a shallow outdoor flume. Biotechnol Bioeng 28:191–197

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol Bioeng 40:1119–1122

    Article  CAS  PubMed  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Markov SA, Thomas AD, Bazin MJ, Hall DO (1997) Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Int J Hydrog Energy 22:521–524

    Article  CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E (1999) Microalgae, mass culture methods. In: Flickinger MC, Dew SW (eds) Encyclopedia of bioprocess technology: fermentation. Biocatalysis and bioseparations. Wiley, New York, pp 1753–1769

    Google Scholar 

  • Molina Grima E, Garcia Camacho F, Sanchez Perez JA, Fernandez Sevilla JM, Acién-Fernández FG, Contreras Gomez A (1994) A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol 61:167–173

    Article  CAS  Google Scholar 

  • Molina Grima E, Fernández Sevilla JM, Sánchez Pérez JA, García Camacho F (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién-Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Molina Grima E, Fernández Sevilla JM, Acién-Fernández FG (2010) Microalgae, mass culture methods. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Willey, New York, pp 1–24

    Google Scholar 

  • Oncel S, Sabankay M (2012) Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour Technol 12:228–234

    Article  Google Scholar 

  • Oswald WJ (1988) Large scale algal culture systems. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, MA, pp 305–328

    Google Scholar 

  • Oswald WJ, Golueke CG (1968) Large scale production of microalgae. In: Mateless RI, Tannenbaum SR (eds) Single cell protein. MIT Press, Cambridge, MA, pp 271–305

    Google Scholar 

  • Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto FA, Troshina LO, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27:1209–1215

    Article  Google Scholar 

  • Posewitz M, Smolinski S, Kanakagiri S, Melis A, Seibert M (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Criti Rev Microbiol 31:9–31

    Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv Biochem Eng Biotechnol 59:123–152

    Article  CAS  Google Scholar 

  • Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol 102:3240–3245

    Article  CAS  PubMed  Google Scholar 

  • Qiang H, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8:139–145

    Article  Google Scholar 

  • Qiang H, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Rupprecht J, Hankamer B, Mussgnug J, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    Article  CAS  PubMed  Google Scholar 

  • Sasikala K, Ramana CV, Rao PR (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 16:597–601

    Article  CAS  Google Scholar 

  • Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157:620–627

    Article  CAS  PubMed  Google Scholar 

  • Sierra E, Acién-Fernández FG, Fernández JM, García JL, González C, Molina Grima E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  • Terry KL (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 28:988–995

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR, Chini Zittelli C, Benemann JR (1998) A tubular internal gas exchange photobioreactor for biological hydrogen production. In: Zaborsky OR (ed) BioHydrogen. Plenum Press, New York, pp 391–402

    Google Scholar 

  • Tsygankov AA, Hall DO, Liu J, Rao KK (1998) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR (ed) BioHydrogen. Plenum Press, New York, pp 431–440

    Google Scholar 

  • Tsygankov AA, Borodin VB, Rao KK, Hall DO (1999) H2 photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnol Bioeng 64:709–715

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80:777–785

    Article  CAS  PubMed  Google Scholar 

  • Verlaan P, Van Eijs AMM, Tramper J, Van’t Riet K (1989) Estimation of axial dispersion in individual sections of an airlift-loop reactor. Chem Eng Sci 44:1139–1146

    Article  CAS  Google Scholar 

  • Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonhask A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 43–65

    Google Scholar 

  • Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels: A subcontract report. United States: SERI/STR-231-2840

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  PubMed  Google Scholar 

  • Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T (2002) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439

    Article  CAS  Google Scholar 

  • Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627

    Article  CAS  PubMed  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon JH, Shin JH, Kim MS, Sim SJ, Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydrog Energy 31:721–727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution of all our colleagues of the Marine Microalgae Biotechnology Group of the University of Almería who have worked with us in the design and assessment of photobioreactors in the last 15 years. Special acknowledgement to Cajamar Foundation and the financial support from projects granted by EU (EnerBioAlgae. SOE2/P2/E374. SUDOE INTERREG IVB), Secretatia de Estado de Investigación, Ministerio de Economía y Competitividad (Project DPI2011-27818-C02-01) as well as by FEDER funds, PlanE for microalgae, ACCIONA S.A., ENDESAS.A. and Junta de Andalucía (CVI 131 &173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Molina-Grima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernández-Sevilla, J.M., Acién-Fernández, F.G., Molina-Grima, E. (2014). Photobioreactors Design for Hydrogen Production. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_13

Download citation

Publish with us

Policies and ethics