Skip to main content

The Next Generation Sequencing Based Molecular Diagnosis of Visual Diseases

  • Chapter
  • First Online:
Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders

Abstract

Vision is one of the most important senses of human beings. It is estimated that 285 million people worldwide suffer from visual impairments. Although the etiology of visual impairments is both complex and multifactorial, genetic factors have been shown to play important roles. Both common and rare genetic variants have been associated with various types of inherited visual disorders. Studying the genetics of visual impairments can help to confirm or to refine clinical diagnosis, lead to better prognosis, guide the family planning, and allow targeted treatment(s). Recently developed next generation sequencing technology can generate enormous amount of sequencing data quickly at relatively low cost, and has great advantages compared to other sequencing methods. Due to the clinical and genetic heterogeneity of human visual disorders, next generation sequencing technology is a useful tool for the molecular diagnosis. In this review, we will discuss specifically the application of next generation sequencing in the molecular diagnosis of visual disorders with monogenic or oligogenic inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marieb, E., Hoehn, K.: Human Anatomy & Physiology, 7th edn. Pearson Benjamin Cummings, San Francisco (2007)

    Google Scholar 

  2. Pascolini, D., Mariotti, S.P.: Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96, 614–618 (2012)

    Article  PubMed  Google Scholar 

  3. Gillespie, R.L., et al.: Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 121, 2124–2137.e1–2 (2014)

    Article  PubMed  Google Scholar 

  4. Miyake, M., et al.: Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun. 6, 6689 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y., et al.: Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 46, 1115–1119 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, C.-Y., et al.: Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am. J. Hum. Genet. 93, 264–277 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klein, R.J., et al.: Complement factor H polymorphism in age-related macular degeneration. Science. 308, 385–389 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X., et al.: Comprehensive molecular diagnosis of 179 leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J. Med. Genet. 50, 674–688 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Werdich, X.Q., Place, E.M., Pierce, E.A.: Systemic diseases associated with retinal dystrophies. Semin. Ophthalmol. 29, 319–328 (2014)

    Article  PubMed  Google Scholar 

  10. Ellingford, J.M., et al.: Pinpointing clinical diagnosis through whole exome sequencing to direct patient care: a case of senior-Loken syndrome. Lancet Lond. Engl. 385, 1916 (2015)

    Article  Google Scholar 

  11. Richter, S., et al.: Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am. J. Hum. Genet. 72, 253–269 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Dommering, C.J., et al.: Reproductive decision-making: a qualitative study among couples at increased risk of having a child with retinoblastoma. Clin. Genet. 78, 334–341 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Xu, K., et al.: Preimplantation genetic diagnosis for retinoblastoma: the first reported liveborn. Am J. Ophthalmol. 137, 18–23 (2004)

    Article  PubMed  Google Scholar 

  14. Bainbridge, J.W.B., et al.: Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 372, 1887–1897 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jacobson, S.G., et al.: Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372, 1920–1926 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacLaren, R.E., et al.: Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet Lond. Engl. 383, 1129–1137 (2014)

    Article  CAS  Google Scholar 

  17. Ottaviani, D., et al.: Spectrum of RB1 mutations in argentine patients: 20-years experience in the molecular diagnosis of retinoblastoma. Ophthalmic Genet. 34, 189–198 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Meunier, I., et al.: Systematic screening of BEST1 and PRPH2 in juvenile and adult vitelliform macular dystrophies: a rationale for molecular analysis. Ophthalmology. 118, 1130–1136 (2011)

    Article  PubMed  Google Scholar 

  19. Boonstra, F.N., et al.: Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 50, 4379–4385 (2009)

    Article  PubMed  Google Scholar 

  20. Chassaing, N., et al.: Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin. Genet. 86, 326–334 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Henderson, R.H., et al.: An assessment of the apex microarray technology in genotyping patients with leber congenital amaurosis and early-onset severe retinal dystrophy. Invest. Ophthalmol. Vis. Sci. 48, 5684–5689 (2007)

    Article  PubMed  Google Scholar 

  22. van Huet, R.A.C., et al.: The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Mol. Vis. 21, 461–476 (2015)

    PubMed  PubMed Central  Google Scholar 

  23. Pereiro, I., et al.: Arrayed primer extension technology simplifies mutation detection in Bardet-Biedl and Alström syndrome. Eur. J. Hum. Genet. EJHG. 19, 485–488 (2011)

    Article  PubMed  Google Scholar 

  24. Anasagasti, A., et al.: Genetic highthroughput screening in retinitis pigmentosa based on high resolution melting (HRM) analysis. Exp. Eye Res. (2013). doi:10.1016/j.exer.2013.10.011

    Google Scholar 

  25. Abu-Safieh, L., et al.: Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res. 23, 236–247 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beryozkin, A., et al.: Identification of mutations causing inherited retinal degenerations in the israeli and palestinian populations using homozygosity mapping. Invest. Ophthalmol. Vis. Sci. 55, 1149–1160 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Littink, K.W., et al.: Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. Invest. Ophthalmol. Vis. Sci. 51, 5943–5951 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mamanova, L., et al.: Target-enrichment strategies for next-generation sequencing. Nat. Methods. 7, 111–118 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Metzker, M.L.: Sequencing technologies - the next generation. Nat. Rev. Genet. 11, 31–46 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Mardis, E.R.: Next-generation sequencing platforms. Annu. Rev. Anal. Chem. Palo Alto Calif. 6, 287–303 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Liu, L., et al.: Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364 (2012)

    PubMed  PubMed Central  Google Scholar 

  32. Wong, L.-J.C.: Next Generation Sequencing. Springer, New York (2013)

    Book  Google Scholar 

  33. Vervoort, R., et al.: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet. 25, 462–466 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Huang, X.-F., Wu, J., Lv, J.-N., Zhang, X., Jin, Z.-B.: Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 307–311 (2015)

    CAS  Google Scholar 

  35. Dabney, J., Meyer, M.: Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques. 52, 87–94 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Benjamini, Y., Speed, T.P.: Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aird, D., et al.: Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gilissen, C., et al.: Genome sequencing identifies major causes of severe intellectual disability. Nature. 511, 344–347 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., et al.: Dependable and efficient clinical utility of target capture-based deep sequencing in molecular diagnosis of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 55, 6213–6223 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Berger, W., Kloeckener-Gruissem, B., Neidhardt, J.: The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 29, 335–375 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Glöckle, N., et al.: Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur. J. Hum. Genet. EJHG. 22, 99–104 (2014)

    Article  PubMed  CAS  Google Scholar 

  42. Feng, Y., Chen, D., Wang, G.-L., Zhang, V.W., Wong, L.-J.C.: Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 99–107 (2015)

    CAS  Google Scholar 

  43. Bonnet, C., et al.: Complete exon sequencing of all known usher syndrome genes greatly improves molecular diagnosis. Orphanet J. Rare Dis. 6, 21 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roux, A.-F., et al.: Survey of the frequency of USH1 gene mutations in a cohort of usher patients shows the importance of cadherin 23 and protocadherin 15 genes and establishes a detection rate of above 90%. J. Med. Genet. 43, 763–768 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bujakowska, K.M., et al.: Targeted exon sequencing in usher syndrome type I. Invest. Ophthalmol. Vis. Sci. 55, 8488–8496 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshimura, H., et al.: Massively parallel DNA sequencing facilitates diagnosis of patients with usher syndrome type 1. PLoS One. 9, e90688 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qu, L.-H., Jin, X., Xu, H.-W., Li, S.-Y., Yin, Z.-Q.: Detecting novel genetic mutations in Chinese usher syndrome families using next-generation sequencing technology. Mol. Genet. Genomics MGG. 290, 353–363 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Gilmour, D.F.: Familial exudative vitreoretinopathy and related retinopathies. Eye Lond. Engl. 29, 1–14 (2015)

    Article  CAS  Google Scholar 

  49. Salvo, J., et al.: Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients. Invest. Ophthalmol. Vis. Sci. 56, 1937–1946 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, L., et al.: Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum. Genet. 134, 217–230 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Fu, Q., et al.: Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 54, 4158–4166 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, H., et al.: Comprehensive molecular diagnosis of a large chinese leber congenital amaurosis cohort. Invest. Ophthalmol. Vis. Sci. 56, 3642–3655 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kajiwara, K., Berson, E.L., Dryja, T.P.: Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 264, 1604–1608 (1994)

    Article  CAS  PubMed  Google Scholar 

  54. Goldberg, A.F., Molday, R.S.: Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc. Natl. Acad. Sci. U. S. A. 93, 13726–13730 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schäffer, A.A.: Digenic inheritance in medical genetics. J. Med. Genet. 50, 641–652 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Katsanis, N., et al.: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 293, 2256–2259 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. Katsanis, N., et al.: BBS4 is a minor contributor to Bardet-Biedl syndrome and may also participate in triallelic inheritance. Am. J. Hum. Genet. 71, 22–29 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu-Safieh, L., et al.: In search of triallelism in Bardet-Biedl syndrome. Eur. J. Hum. Genet. EJHG. 20, 420–427 (2012)

    Article  CAS  PubMed  Google Scholar 

  59. Mykytyn, K., et al.: Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat. Genet. 31, 435–438 (2002)

    CAS  PubMed  Google Scholar 

  60. Khanna, H., et al.: A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739–745 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fahim, A.T., et al.: Polymorphic variation of RPGRIP1L and IQCB1 as modifiers of X-linked retinitis pigmentosa caused by mutations in RPGR. Adv. Exp. Med. Biol. 723, 313–320 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ebermann, I., et al.: PDZD7 is a modifier of retinal disease and a contributor to digenic usher syndrome. J. Clin. Invest. 120, 1812–1823 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richards, S., et al.: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 405–424 (2015)

    Google Scholar 

  64. den Hollander, A.I., et al.: Mutations in the CEP290 (NPHP6) gene are a frequent cause of leber congenital amaurosis. Am. J. Hum. Genet. 79, 556–561 (2006)

    Article  Google Scholar 

  65. Coppieters, F., et al.: Massively parallel sequencing for early molecular diagnosis in leber congenital amaurosis. Genet. Med. Off. J. Am. Coll. Med. Genet. 14, 576–585 (2012)

    CAS  Google Scholar 

  66. Braun, T.A., et al.: Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 22, 5136–5145 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vaché, C., et al.: Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy. Hum. Mutat. 33, 104–108 (2012)

    Article  PubMed  CAS  Google Scholar 

  68. Steele-Stallard, H.B., et al.: Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing. Orphanet J. Rare Dis. 8, 122 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aller, E., et al.: Identification of large rearrangements of the PCDH15 gene by combined MLPA and a CGH: large duplications are responsible for usher syndrome. Invest. Ophthalmol. Vis. Sci. 51, 5480–5485 (2010)

    Article  PubMed  Google Scholar 

  70. Pirooznia, M., Goes, F.S., Zandi, P.P.: Whole-genome CNV analysis: advances in computational approaches. Front. Genet. 6, 138 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dommering, C.J., et al.: RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J. Med. Genet. 51, 366–374 (2014)

    Article  CAS  PubMed  Google Scholar 

  72. Greger, V., Passarge, E., Höpping, W., Messmer, E., Horsthemke, B.: Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158 (1989)

    Article  CAS  PubMed  Google Scholar 

  73. Castéra, L., et al.: MDM2 as a modifier gene in retinoblastoma. J. Natl. Cancer Inst. 102, 1805–1808 (2010)

    Article  PubMed  CAS  Google Scholar 

  74. de Oliveira Reis, A.H., et al.: Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr. Blood Cancer. 59, 39–43 (2012)

    Article  PubMed  Google Scholar 

  75. Zhao, J.-J., et al.: Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 25, 13–20 (2009)

    Article  Google Scholar 

  76. Rushlow, D.E., et al.: Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 14, 327–334 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. Ayari Jeridi, H., et al.: Genetic testing in Tunisian families with heritable retinoblastoma using a low cost approach permits accurate risk prediction in relatives and reveals incomplete penetrance in adults. Exp. Eye Res. 124, 48–55 (2014)

    Article  CAS  PubMed  Google Scholar 

  78. Chen, Z., et al.: Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum. Mutat. 35, 384–391 (2014)

    Article  CAS  PubMed  Google Scholar 

  79. Amitrano, S., et al.: Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur. J. Hum. Genet. EJHG. (2015). doi:10.1038/ejhg.2015.6

    PubMed  Google Scholar 

  80. Devarajan, B., et al.: Targeted next generation sequencing of RB1 gene for the molecular diagnosis of retinoblastoma. BMC Cancer. 15, 320 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Francis, P.J., Berry, V., Bhattacharya, S.S., Moore, A.T.: The genetics of childhood cataract. J. Med. Genet. 37, 481–488 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Apple, D.J., Ram, J., Foster, A., Peng, Q.: Elimination of cataract blindness: a global perspective entering the new millenium. Surv. Ophthalmol. 45(Suppl 1), S1–196 (2000)

    PubMed  Google Scholar 

  83. Gilbert, C., Foster, A.: Childhood blindness in the context of VISION 2020--the right to sight. Bull. World Health Organ. 79, 227–232 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahi, J.S., Dezateux, C., British Congenital Cataract Interest Group: Measuring and interpreting the incidence of congenital ocular anomalies: lessons from a national study of congenital cataract in the UK. Invest. Ophthalmol. Vis. Sci. 42, 1444–1448 (2001)

    CAS  PubMed  Google Scholar 

  85. Shiels, A., Bennett, T.M., Hejtmancik, J.F.: Cat-map: putting cataract on the map. Mol. Vis. 16, 2007–2015 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponnam, S.P.G., et al.: Mutational screening of Indian families with hereditary congenital cataract. Mol. Vis. 19, 1141–1148 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hansen, L., et al.: Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest. Ophthalmol. Vis. Sci. 50, 3291–3303 (2009)

    Article  PubMed  Google Scholar 

  88. Santhiya, S.T., et al.: Mutation analysis of congenital cataracts in Indian families: identification of SNPS and a new causative allele in CRYBB2 gene. Invest. Ophthalmol. Vis. Sci. 45, 3599–3607 (2004)

    Article  PubMed  Google Scholar 

  89. Sun, W., Xiao, X., Li, S., Guo, X., Zhang, Q.: Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS One. 9, e100455 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Allingham, R.R., Liu, Y., Rhee, D.J.: The genetics of primary open-angle glaucoma: a review. Exp. Eye Res. 88, 837–844 (2009)

    Article  CAS  PubMed  Google Scholar 

  91. Wang, R., Wiggs, J.L.: Common and rare genetic risk factors for glaucoma. Cold Spring Harb. Perspect. Med. 4, a017244 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, Z., et al.: A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 24, 3880–3892 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, X., et al.: Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 55, 3594–3602 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. Cassa, C.A., Tong, M.Y., Jordan, D.M.: Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum. Mutat. 34, 1216–1220 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  95. Andreasen, C., et al.: New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur. J. Hum. Genet. EJHG. 21, 918–928 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. Xue, Y., et al.: Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am. J. Hum. Genet. 91, 1022–1032 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Strom, S.P., Gorin, M.B.: Evaluation of autosomal dominant retinal dystrophy genes in an unaffected cohort suggests rare or private missense variants may often be benign. Mol. Vis. 19, 980–985 (2013)

    PubMed  PubMed Central  Google Scholar 

  98. Pozo, M.G.-D., et al.: Re-evaluation casts doubt on the pathogenicity of homozygous USH2A p.C759F. Am. J. Med. Genet. A. 167, 1597–1600 (2015)

    Article  PubMed  CAS  Google Scholar 

  99. Landrum, M.J., et al.: ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014)

    Article  CAS  PubMed  Google Scholar 

  100. Ran, X., et al.: ‘RetinoGenetics’: a comprehensive mutation database for genes related to inherited retinal degeneration. Database J. Biol. Databases Curation. 2014, bau047 (2014)

    Google Scholar 

  101. van Huet, R.A.C., et al.: The RD5000 database: facilitating clinical, genetic, and therapeutic studies on inherited retinal diseases. Invest. Ophthalmol. Vis. Sci. 55, 7355–7360 (2014)

    Article  PubMed  Google Scholar 

  102. Clayton, E.W.: Ethical, legal, and social implications of genomic medicine. N. Engl. J. Med. 349, 562–569 (2003)

    Article  PubMed  Google Scholar 

  103. Stone, E.M., et al.: Recommendations for genetic testing of inherited eye diseases: report of the American Academy of ophthalmology task force on genetic testing. Ophthalmology. 119, 2408–2410 (2012)

    Article  PubMed  Google Scholar 

  104. McKibbin, M., et al.: Current understanding of genetics and genetic testing and information needs and preferences of adults with inherited retinal disease. Eur. J. Hum. Genet. EJHG. 22, 1058–1062 (2014)

    Article  PubMed  Google Scholar 

  105. Hysi, P.G., Wojciechowski, R., Rahi, J.S., Hammond, C.J.: Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Invest. Ophthalmol. Vis. Sci. 55, 3344–3351 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ritchie, M.D., et al.: Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol. Vis. 20, 1281–1295 (2014)

    PubMed  PubMed Central  Google Scholar 

  107. Fritsche, L.G., et al.: Seven new loci associated with age-related macular degeneration. Nat. Genet. 45(433–439), 439e1–439e2 (2013)

    Google Scholar 

  108. Ciralsky, J., Colby, K.: Congenital corneal opacities: a review with a focus on genetics. Semin. Ophthalmol. 22, 241–246 (2007)

    Article  PubMed  Google Scholar 

  109. Hosseini, S.M., et al.: The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Hum. Genet. 134, 247–257 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. Hartong, D.T., Berson, E.L., Dryja, T.P.: Retinitis pigmentosa. Lancet Lond. Engl. 368, 1795–1809 (2006)

    Article  CAS  Google Scholar 

  111. Haim, M.: Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol. Scand. Suppl. 1–34 (2002)

    Google Scholar 

  112. Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. The Retinoschisis Consortium. Hum. Mol. Genet. 7, 1185–1192 (1998)

    Google Scholar 

  113. Maugeri, A., et al.: The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am. J. Hum. Genet. 64, 1024–1035 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kivelä, T.: The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br. J. Ophthalmol. 93, 1129–1131 (2009)

    Article  PubMed  Google Scholar 

  115. Roosing, S., et al.: Causes and consequences of inherited cone disorders. Prog. Retin. Eye Res. 42, 1–26 (2014)

    Article  CAS  PubMed  Google Scholar 

  116. den Hollander, A.I., Roepman, R., Koenekoop, R.K., Cremers, F.P.M.: Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 27, 391–419 (2008)

    Article  CAS  Google Scholar 

  117. Forsythe, E., Beales, P.L.: Bardet-Biedl syndrome. Eur. J. Hum. Genet. EJHG. 21, 8–13 (2013)

    Article  CAS  PubMed  Google Scholar 

  118. Millán, J.M., et al.: An update on the genetics of usher syndrome. J. Ophthalmol. 2011, 417217 (2011)

    Article  PubMed  CAS  Google Scholar 

  119. Simpson, D.A., Clark, G.R., Alexander, S., Silvestri, G., Willoughby, C.E.: Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa. J. Med. Genet. 48, 145–151 (2011)

    Article  PubMed  Google Scholar 

  120. Neveling, K., et al.: Next-generation genetic testing for retinitis pigmentosa. Hum. Mutat. 33, 963–972 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, F., et al.: Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum. Genet. 133, 331–345 (2014)

    Article  CAS  PubMed  Google Scholar 

  122. Xu, Y., et al.: Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum. Genet. 133, 1255–1271 (2014)

    Article  PubMed  Google Scholar 

  123. Xu, Y., et al.: Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing. Mol. Vis. 21, 477–486 (2015)

    PubMed  PubMed Central  Google Scholar 

  124. Zernant, J., et al.: Analysis of the ABCA4 gene by next-generation sequencing. Invest. Ophthalmol. Vis. Sci. 52, 8479–8487 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Strom, S.P., et al.: Molecular diagnosis of putative Stargardt disease probands by exome sequencing. BMC Med. Genet. 13, 67 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fujinami, K., et al.: ABCA4 gene screening by next-generation sequencing in a British cohort. Invest. Ophthalmol. Vis. Sci. 54, 6662–6674 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, X., et al.: Molecular diagnosis of putative Stargardt disease by capture next generation sequencing. PLoS One. 9, e95528 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Zaneveld, J., et al.: Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 262–270 (2015)

    CAS  Google Scholar 

  129. Licastro, D., et al.: Molecular diagnosis of usher syndrome: application of two different next generation sequencing-based procedures. PLoS One. 7, e43799 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xing, D.-J., et al.: Comprehensive molecular diagnosis of Bardet-Biedl syndrome by high-throughput targeted exome sequencing. PLoS One. 9, e90599 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. O’Sullivan, J., et al.: A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J. Med. Genet. 49, 322–326 (2012)

    Article  PubMed  Google Scholar 

  132. Schorderet, D.F., Iouranova, A., Favez, T., Tiab, L., Escher, P.: IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies. Biomed. Res. Int. 2013, 198089 (2013)

    Article  PubMed  CAS  Google Scholar 

  133. Shanks, M.E., et al.: Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur. J. Hum. Genet. EJHG. 21, 274–280 (2013)

    Article  CAS  PubMed  Google Scholar 

  134. Chen, X., et al.: Targeted sequencing of 179 genes associated with hereditary retinal dystrophies and 10 candidate genes identifies novel and known mutations in patients with various retinal diseases. Invest. Ophthalmol. Vis. Sci. 54, 2186–2197 (2013)

    Article  PubMed  CAS  Google Scholar 

  135. Watson, C.M., et al.: Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing. PLoS One. 9, e104281 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Huang, X.-F., et al.: Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 271–278 (2015)

    CAS  Google Scholar 

  137. Liu, X., et al.: Molecular genetic testing in clinical diagnostic assessments that demonstrate correlations in patients with autosomal recessive inherited retinal dystrophy. JAMA Ophthalmol. 133, 427–436 (2015)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X., Lewis, R.A. (2017). The Next Generation Sequencing Based Molecular Diagnosis of Visual Diseases. In: Wong, LJ. (eds) Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-56418-0_4

Download citation

Publish with us

Policies and ethics