Skip to main content

Resonant Thermal Transport in Nanophononic Metamaterials

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Thermoelectric materials allow heat to be converted directly into electricity or, conversely, to be absorbed or rejected when electrical power is provided. A key requirement for a thermoelectric material is to exhibit a low thermal conductivity while simultaneously possessing a high power factor, which is proportional to the electrical conductivity. The challenge, however, is that these two property targets are coupled and are at odds with each other in common materials. This natural constraint has limited the performance of thermoelectric materials and impeded their industrial proliferation. In this chapter, we present a recently proposed material concept, termed nanophononic metamaterial, which overcomes this historical constraint. One promising configuration of a nanophononic metamaterial consists of a silicon membrane with inherently attached local resonators in the form of nanopillars distributed on the surface. The nanopillar local resonances, or vibrons, hybridize with the underlying phonon waves carrying the heat in the membrane, which leads to significant reductions in the phonon group velocities and to mode localizations within the nanopillars. These two wave-based phenomena, supplemented by reductions in phonon lifetimes, together cause a reduction in the lattice thermal conductivity along the base membrane. Since the nanopillars are located external to the main body of the membrane, changes to the electronic band structure and electron scattering are both minimized – thus a negligible effect on the generation and flow of electrons is expected. This novel nanostructure-induced mechanism therefore has all the ingredients to enable thermoelectric energy conversion at record high performance while using a low-cost and practical base material such as silicon. This chapter includes lattice dynamics- and molecular dynamics-based analyses of the underlying physical processes stemming from the presence of the local resonances and discusses how the nature of resonant thermal transport is shaped particularly by the wave-based mechanism of phonon-vibron coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achaoui Y, Laude V, Benchabane S, Khelif A (2013) Local resonances in phononic crystals and in random arrangements of pillars on a surface. J Appl Phys 114:104503

    Article  ADS  Google Scholar 

  • Anderson J, Burns PJ, Milroy D, Ruprecht P, Hauser T, Siegel HJ (2017) Deploying RMACC summit: an HPC resource for the Rocky Mountain Region. In: Proceedings of the Practice and experience in advanced research computing 2017 on sustainability, Success and Impact, ACM p. 8

    Google Scholar 

  • Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171

    Article  ADS  Google Scholar 

  • Chen G, Dresselhaus M, Dresselhaus G, Fleurial JP, Caillat T (2013) Recent developments in thermoelectric materials. Int Mater Rev 48(1):45–66

    Article  Google Scholar 

  • Davis BL, Hussein MI (2014) Nanophononic metamaterial: thermal conductivity reduction by local resonance. Phys Rev Lett 112:055505

    Article  ADS  Google Scholar 

  • Esfarjani K, Chen G, Stokes HT (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84:085204

    Article  ADS  Google Scholar 

  • France-Lanord EB, Albaret T, Merabia S, Lacroix D, Termentzidis K (2014) Atomistic amorphous/crystalline interface modelling for superlattices and core/shell nanowires. J Phys-Condens Mat 26:055011

    Article  Google Scholar 

  • He Y, Donadio D, Galli G (2011) Heat transport in amorphous silicon: interplay between morphology and disorder. Appl Phys Lett 98:144101

    Article  ADS  Google Scholar 

  • Honarvar H, Hussein MI (2016) Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations. Phys Rev B 93:081412(R)

    Google Scholar 

  • Honarvar H, Hussein MI (2018) Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys Rev B 97:195413

    Article  ADS  Google Scholar 

  • Honarvar H, Yang L, Hussein MI (2016) Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl Phys Lett 108:263101

    Article  ADS  Google Scholar 

  • Hussein MI, Davis BL (2016) Nanophononic metamaterials. US patent 9417465 B2

    Google Scholar 

  • Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66:040802

    Article  ADS  Google Scholar 

  • Johnson JA, Maznev AA, Cuffe J, Eliason JK, Minnich AJ, Kehoe T, Torres CMS, Chen G, Nelson KA (2013) Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys Rev Lett 110:025901

    Article  ADS  Google Scholar 

  • Khammas A (2007–2018) Book of synergy. http://www.buch-der-synergie.de

  • Kremer R, Graf K, Cardona M, Devyatykh G, Gusev A, Gibin A, Inyushkin A, Taldenkov A, Pohl HJ (2004) Thermal conductivity of isotopically enriched 28si: revisited. Solid State Commun 131(8):499–503

    Article  ADS  Google Scholar 

  • Ladd AJC, Moran B, Hoover WG (1986) Lattice thermal conductivity: a comparison of molecular dynamics and anhaimonic lattice dynamics. Phys Rev B 34:5058–5064

    Article  ADS  Google Scholar 

  • Landry ES, Hussein MI, McGaughey AJH (2008) Complex superlattice unit cell designs for reduced thermal conductivity. Phys Rev B 77:184302

    Article  ADS  Google Scholar 

  • Larkin JM, McGaughey AJH (2014) Thermal conductivity accumulation in amorphous silica and amorphous silicon. Phys Rev B 89:144303

    Article  ADS  Google Scholar 

  • Larkin JM, Turney JE, Massicotte AD, Amon CH, McGaughey AJH (2014) Comparison and evaluation of spectral energy methods for predicting phonon properties. J Comput Theor Nanos 11(1):249–256

    Article  Google Scholar 

  • Lee JH, Galli GA, Grossman JC (2008) Nanoporous si as an efficient thermoelectric material. Nano Lett 8:3750–3754

    Article  ADS  Google Scholar 

  • Liu ZY, Zhang XX, Mao YW, Zhu YY, Yang ZY, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Article  ADS  Google Scholar 

  • Mangold C, Neogi S, Donadio D (2016) Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: a first principles study. Appl Phys Lett 109:053902

    Article  ADS  Google Scholar 

  • McGaughey AJH, Kaviany M (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon. Int J Heat Mass Tran 47(8):1783–1798

    Article  Google Scholar 

  • Minnich AJ (2012) Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys Rev Lett 109:205901

    Article  ADS  Google Scholar 

  • Monroe D (2014) Slowing heat without obstructions. Physics 7:14

    Article  Google Scholar 

  • Neogi S, Reparaz S, Pereira LFC, Graczykowski B, Wagner MR, Sledzinska M, Shchepetov A, Prunnila M, Ahopelto J, Torres CMS, Donadio D (2015) Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering. ACS Nano 9:3820–3828

    Article  Google Scholar 

  • Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084

    Article  ADS  Google Scholar 

  • Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur JO, Hladky-Hennion AC (2008) Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Phys Rev B 78:104105

    Article  ADS  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  ADS  Google Scholar 

  • Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Rowe DM (2005) Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton

    Book  Google Scholar 

  • Shanks HR, Maycock PD, Sidles PH, Danielson GC (1963) Thermal conductivity of silicon from 300 to 1400K. Phys Rev 130:1743–1748

    Article  ADS  Google Scholar 

  • Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  ADS  Google Scholar 

  • Snyder G, Toberer E (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  ADS  Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262

    Article  ADS  Google Scholar 

  • Stranz A, Kähler J, Waag A, Peiner E (2013) Thermoelectric properties of high-doped silicon from room temperature to 900 k. J Electron Mater 42:2381–2387

    Article  ADS  Google Scholar 

  • Thomas JA, Turney JE, Iutzi RM, Amon CH, McGaughey AJH (2010) Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys Rev B 81(8):081411

    Article  ADS  Google Scholar 

  • Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD et al (2014) Xsede: accelerating scientific discovery. Comput Sci Eng 16(5): 62–74

    Article  Google Scholar 

  • Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980

    Article  Google Scholar 

  • Weber L, Gmelin E (1991) Transport properties of silicon. Appl Phys A 53:136–140

    Article  ADS  Google Scholar 

  • Wu TT, Huang ZG, Tsai TC, Wu TC (2008) Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl Phys Lett 93:111902

    Article  ADS  Google Scholar 

  • Xiong S, Sääskilahti K, Kosevich YA, Han H, Donadio D, Volz S (2016) Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity. Phys Rev Lett 117:025503

    Article  ADS  Google Scholar 

  • Yu JK, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718–721

    Article  ADS  Google Scholar 

  • Zwanzig R (1965) Time-correlation functions and transport coefficients in statsitical mechanics. Annu Rev Phys Chem 16:1798–1800

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science Foundation (NSF) CAREER Grant No. 1254931, the Smead Faculty Fellowship program, and the Teets Family Doctoral Fellowship program. This work utilized the Janus supercomputer, which is supported by NSF Grant No. CNS-0821794 and the University of Colorado Boulder. This research also utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University (Anderson et al. 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud I. Hussein .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hussein, M.I., Honarvar, H. (2018). Resonant Thermal Transport in Nanophononic Metamaterials. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_17-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics