Skip to main content
Log in

Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Energy Agency (IEA), World Energy Outlook, 1st edn. (OECD/IEA, Paris, 2011), pp. 1–659

  2. C. Drasar and E. Müller, Mater. Sci. Forum 492–493, 273–280 (2005).

    Article  Google Scholar 

  3. T.C. Harman, M.P. Walsh, B.E. Laforge, and G.W. Turner, J. Electron. Mater. 34, 19–22 (2005).

    Article  Google Scholar 

  4. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).

    Article  CAS  Google Scholar 

  5. A. Stranz, Ü. Sökmen, J. Kähler, A. Waag, and E. Peiner, Sensors Actuators A 171, 48–53 (2011).

    CAS  Google Scholar 

  6. D.M. Rowe, Thermoelectric Handbook: Micro to Nano (Boca Raton, FL: CRC Press, 2006), p. 22-6.

    Google Scholar 

  7. F. Bernhard, Technische Temperaturmessung (Berlin: Springer, 2004), p. 1264.

    Book  Google Scholar 

  8. T.H. Geballe and G.W. Hull, Phys. Rev. 98, 940–947 (1955).

    Article  CAS  Google Scholar 

  9. N.F. Hinsche, I. Mertig, and P. Zahn, J. Phys. Condens. Matter 23, 295502 (2011).

    Google Scholar 

  10. A. Cezairliyan, K.D. Maglic, and V.E. Peletsky, Compendium of Thermophysical Property Measurement Methods 2: Recommended Measurement Techniques and Practices, 1st ed. (New York: Springer, 1992), pp. 1–661.

    Google Scholar 

  11. C.J. Glassbrenner and G.A. Slack, Phys. Rev. 134, 1058–1069 (1964).

    Article  CAS  Google Scholar 

  12. W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, and D.L. McElroy, Phys. Rev. 167, 765–782 (1968).

    Article  CAS  Google Scholar 

  13. D.T. Morelli, J.P. Heremans, and G.A. Slack, Phys. Rev. B 66, 195304 (2002).

    Article  Google Scholar 

  14. M.E. Brinson and W. Dunstan, J. Phys. C Solid State Phys. 3, 483 (1970).

    Article  CAS  Google Scholar 

  15. A. Glen and J. Slack, Appl. Phys. 35, 3460–3466 (1964).

    Article  Google Scholar 

  16. D.K. Schroeder, Semiconductor Material and Device Characterization, 3rd ed. (New Jersey: Wiley-Interscience, 2006), pp. 1–779.

    Google Scholar 

  17. G.L. Pearson and J. Bardeen, Phys. Rev. 75, 865–883 (1949).

    Article  CAS  Google Scholar 

  18. F.J. Morin and J.P. Maita, Phys. Rev. 96, 28–35 (1954).

    Article  CAS  Google Scholar 

  19. F. Mancarella, A. Roncaglia, and G.C. Cardinali, Sensors Actuators A 132, 289–295 (2006).

    Article  CAS  Google Scholar 

  20. J. Xie, C. Lee, M.-F. Wang, Y. Liu, and H. Feng, J. Micromech. Microeng. 19, 125029 (2009).

    Article  Google Scholar 

  21. M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturmc, M. Franosch, and G. Wachutka, Sensors Actuators A 114, 362–370 (2004).

    Article  CAS  Google Scholar 

  22. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19–25 (2012).

    Article  CAS  Google Scholar 

  23. L. Weber and E. Gmelin, Appl. Phys. A 53, 136–140 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stranz.

Additional information

Proceedings of ICT/ECT Joint Conference 2012, July 9–12, 2012, Aalborg, Denmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranz, A., Kähler, J., Waag, A. et al. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K. J. Electron. Mater. 42, 2381–2387 (2013). https://doi.org/10.1007/s11664-013-2508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2508-0

Keywords

Navigation