Skip to main content

Non-PCR Amplification Techniques

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Signal, probe, and non-PCR target amplification methods have been developed as viable alternatives to PCR testing for infectious agents. These signal amplification methods include hybrid capture and Invader, as well as target amplification methods such as transcription-mediated amplification, strand displacement amplification, loop-mediated isothermal amplification, and helicase-dependent amplification. The principles of these methods and their commercially available FDA-cleared assays are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis K. Dancing naked in the mind field. 1st ed. New York: Vintage Books; 2000.

    Google Scholar 

  2. Pendrak ML, Yan SS. Non-polymerase chain reaction mediated target amplification techniques. In: Advanced techniques in diagnostic microbiology. 1st ed. New York: Springer; 2006.

    Google Scholar 

  3. Colby C, Stollar BD, Simon MI. Interferon induction: DNA-RNA hybrid or double stranded RNA? Nat New Biol. 1971;229(6):172–4.

    Article  CAS  Google Scholar 

  4. Rudkin GT, Stollar BD. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature. 1977;265(5593):472–3.

    Article  CAS  Google Scholar 

  5. Stollar BD. Doubls-helical polynucleotides: immunochemical recognition of differing conformations. Science. 1970;169(3945):609–11.

    Article  CAS  Google Scholar 

  6. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, et al. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods. 1986;89(1):123–30.

    Article  CAS  Google Scholar 

  7. Carpenter WR, Schutzbank TE, Tevere VJ, Tocyloski KR, Dattagupta N, Yeung KK. A transcriptionally amplified DNA probe assay with ligatable probes and immunochemical detection. Clin Chem. 1993;39(9):1934–8.

    CAS  PubMed  Google Scholar 

  8. Schiffman MH, Kiviat NB, Burk RD, Shah KV, Daniel RW, Lewis R, et al. Accuracy and interlaboratory reliability of human papillomavirus DNA testing by hybrid capture. J Clin Microbiol. 1995;33(3):545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beck S, Koster H. Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem. 1990;62(21):2258–70.

    Article  CAS  Google Scholar 

  10. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451–60. https://doi.org/10.1128/JVI.78.21.-60.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006;208(2):152–64. https://doi.org/10.1002/path.866.

    Article  CAS  PubMed  Google Scholar 

  12. zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36(2 pt 2):794.

    PubMed  Google Scholar 

  13. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50. https://doi.org/10.1038/nrc798.

    Article  CAS  PubMed  Google Scholar 

  14. Schiffman MH. Epidemiology of cervical human papillomaviruses. In: zur Hausen H, editor. Human pathogenic papillomaviruses. Heidelberg: Springer; 1994.

    Google Scholar 

  15. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27. https://doi.org/10.1056/NEJMoa021641.

    Article  PubMed  Google Scholar 

  16. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin. 2012;62(3):147–72. https://doi.org/10.3322/caac.21139. Epub 2012 Mar 14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arney A, Bennett K. Molecular diagnostics of human papillomavirus. Lab Med. 2010;41:523–30.

    Article  Google Scholar 

  18. Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17.

    Article  CAS  Google Scholar 

  19. Castle PE, Solomon D, Wheeler CM, Gravitt PE, Wacholder S, Schiffman M. Human papillomavirus genotype specificity of hybrid capture 2. J Clin Microbiol. 2008;46(8):2595–604. https://doi.org/10.1128/JCM.00824-08. Epub 2008 Jun 25.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schutzbank TE, Jarvis C, Kahmann N, Lopez K, Weimer M, Yount A. Detection of high-risk papillomavirus DNA with commercial invader-technology-based analyte-specific reagents following automated extraction of DNA from cervical brushings in ThinPrep media. J Clin Microbiol. 2007;45(12):4067–9. https://doi.org/10.1128/JCM.01833-07. Epub 2007 Oct 24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Munson E, Du Chateau BK, Bellerose B, Czarnecka J, Griep J. Clinical laboratory evaluation of invader(R) chemistry and hybrid capture for detection of high-risk human papillomavirus in liquid-based cytology specimens. Diagn Microbiol Infect Dis. 2011;71(3):230–5. https://doi.org/10.1016/j.diagmicrobio.2011.07.004. Epub Sep 6.

    Article  CAS  PubMed  Google Scholar 

  22. Schachter J, Hook EW 3rd, McCormack WM, Quinn TC, Chernesky M, Chong S, et al. Ability of the digene hybrid capture II test to identify chlamydia trachomatis and Neisseria gonorrhoeae in cervical specimens. J Clin Microbiol. 1999;37(11):3668–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Darwin LH, Cullen AP, Crowe SR, Modarress KJ, Willis DE, Payne WJ. Evaluation of the hybrid capture 2 CT/GC DNA tests and the GenProbe PACE 2 tests from the same male urethral swab specimens. Sex Transm Dis. 2002;29(10):576–80.

    Article  CAS  Google Scholar 

  24. Quint K, Porras C, Safaeian M, Gonzalez P, Hildesheim A, Quint W, et al. Evaluation of a novel PCR-based assay for detection and identification of chlamydia trachomatis serovars in cervical specimens. J Clin Microbiol. 2007;45(12):3986–91. https://doi.org/10.1128/JCM.01155-07. Epub 2007 Oct 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mazzulli T, Drew LW, Yen-Lieberman B, Jekic-McMullen D, Kohn DJ, Isada C, et al. Multicenter comparison of the digene hybrid capture CMV DNA assay (version 2.0), the pp65 antigenemia assay, and cell culture for detection of cytomegalovirus viremia. J Clin Microbiol. 1999;37(4):958–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Walmsley S, O’Rourke K, Mortimer C, Rachlis A, Fong I, Mazzulli T. Predictive value of cytomegalovirus (CMV) antigenemia and digene hybrid capture DNA assays for CMV disease in human immunodeficiency virus-infected patients. Clin Infect Dis. 1998;27(3):573–81.

    Article  CAS  Google Scholar 

  27. Hanson KE, Reller LB, Kurtzberg J, Horwitz M, Long G, Alexander BD. Comparison of the Digene Hybrid Capture System Cytomegalovirus (CMV) DNA (version 2.0), Roche CMV UL54 analyte-specific reagent, and QIAGEN RealArt CMV LightCycler PCR reagent tests using AcroMetrix OptiQuant CMV DNA quantification panels and specimens from allogeneic-stem-cell transplant recipients. J Clin Microbiol. 2007;45(6):1972–3. https://doi.org/10.1128/JCM.02515-06. Epub 2007 Feb 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan HJ, Yuen MF, Wong DK, Sum SS, Lai CL. Clinical evaluation of the digene hybrid capture II test and the COBAS AMPLICOR monitor test for determination of hepatitis B virus DNA levels. J Clin Microbiol. 2004;42(8):3513–7. https://doi.org/10.1128/JCM.42.8.3513-7.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konnick EQ, Erali M, Ashwood ER, Hillyard DR. Evaluation of the COBAS amplicor HBV monitor assay and comparison with the ultrasensitive HBV hybrid capture 2 assay for quantification of hepatitis B virus DNA. J Clin Microbiol. 2005;43(2):596–603. https://doi.org/10.1128/JCM.43.2.596-603.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol. 1999;17(3):292–6. https://doi.org/10.1038/7044.

    Article  CAS  PubMed  Google Scholar 

  31. Lyamichev VI, Kaiser MW, Lyamicheva NE, Vologodskii AV, Hall JG, Ma WP, et al. Experimental and theoretical analysis of the invasive signal amplification reaction. Biochemistry. 2000;39(31):9523–32.

    Article  CAS  Google Scholar 

  32. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–46. https://doi.org/10.1146/annurev.bi.47.070178.04131.

    Article  CAS  PubMed  Google Scholar 

  33. Kwiatkowski RW, Lyamichev V, de Arruda M, Neri B. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol Diagn. 1999;4(4):353–64. https://doi.org/10.154/MODI00400353.

    Google Scholar 

  34. Hall JG, Eis PS, Law SM, Reynaldo LP, Prudent JR, Marshall DJ, et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci U S A. 2000;97(15):8272–7. https://doi.org/10.1073/pnas.140225597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ledford M, Friedman KD, Hessner MJ, Moehlenkamp C, Williams TM, Larson RS. A multi-site study for detection of the factor V (Leiden) mutation from genomic DNA using a homogeneous invader microtiter plate fluorescence resonance energy transfer (FRET) assay. J Mol Diagn. 2000;2(2):97–104. https://doi.org/10.1016/S525-578(10)60623-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60(24):6921–6.

    CAS  PubMed  Google Scholar 

  37. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8. https://doi.org/10.1200/JCO.2004.07.173. Epub Mar 8.

    Article  CAS  PubMed  Google Scholar 

  38. Harvey M, Stout S, Starkey CR, Hendren R, Holt S, Miller GC. The clinical performance of invader technology and SurePath when detecting the presence of high-risk HPV cervical infection. J Clin Virol. 2009;45(Suppl 1):S79–83. https://doi.org/10.1016/S386-6532(09)70012-5.

    Article  PubMed  Google Scholar 

  39. Ginocchio CC, Barth D, Zhang F. Comparison of the Third Wave Invader human papillomavirus (HPV) assay and the digene HPV hybrid capture 2 assay for detection of high-risk HPV DNA. J Clin Microbiol. 2008;46(5):1641–6. https://doi.org/10.1128/JCM.01824-07. Epub 2008 Mar 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson LR, Starkey CR, Palmer J, Taylor J, Stout S, Holt S, et al. A comparison of two methods to determine the presence of high-risk HPV cervical infections. Am J Clin Pathol. 2008;130(3):401–8. https://doi.org/10.1309/4DXEAFG2JXYF34N3.

    Article  PubMed  Google Scholar 

  41. Wong AK, Chan RC, Nichols WS, Bose S. Human papillomavirus (HPV) in atypical squamous cervical cytology: the invader HPV test as a new screening assay. J Clin Microbiol. 2008;46(3):869–75. https://doi.org/10.1128/JCM.01424-07. Epub 2008 Jan 3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tang YW, Allawi HT, DeLeon-Carnes M, Li H, Day SP, Schmid D. Detection and differentiation of wild-type and vaccine mutant varicella-zoster viruses using an invader Plus method. J Clin Virol. 2007;40(2):129–34. https://doi.org/10.1016/j.jcv.2007.07.007. Epub Aug 28.

    Article  CAS  PubMed  Google Scholar 

  43. Cooksey RC, Holloway BP, Oldenburg MC, Listenbee S, Miller CW. Evaluation of the invader assay, a linear signal amplification method, for identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000;44(5):1296–301.

    Article  CAS  Google Scholar 

  44. Tadokoro K, Yamaguchi T, Kawamura K, Shimizu H, Egashira T, Minabe M, et al. Rapid quantification of periodontitis-related bacteria using a novel modification of invader PLUS technologies. Microbiol Res. 2010;165(1):43–9. https://doi.org/10.1016/j.micres.2008.06.001. Epub Aug 20.

    Article  CAS  PubMed  Google Scholar 

  45. Tadokoro K, Kobayashi M, Yamaguchi T, Suzuki F, Miyauchi S, Egashira T, et al. Classification of hepatitis B virus genotypes by the PCR-invader method with genotype-specific probes. J Virol Methods. 2006;138(1–2):30–9. https://doi.org/10.1016/j.jviromet.2006.07.014. Epub Aug 24.

    Article  CAS  PubMed  Google Scholar 

  46. Tadokoro K, Suzuki F, Kobayashi M, Yamaguchi T, Nagano M, Egashira T, et al. Rapid detection of drug-resistant mutations in hepatitis B virus by the PCR-invader assay. J Virol Methods. 2011;171(1):67–73. https://doi.org/10.1016/j.jviromet.2010.10.001. Epub Oct 13.

    Article  CAS  PubMed  Google Scholar 

  47. Xie MJ, Fukui K, Horie M, Sakihama Y, Hashino K, Kimura H, et al. A novel sensitive immunoassay method based on the invader technique. Anal Biochem. 2008;374(2):278–84. https://doi.org/10.1016/j.ab.2007.11.031. Epub Nov 29.

    Article  CAS  PubMed  Google Scholar 

  48. Zou H, Allawi H, Cao X, Domanico M, Harrington J, Taylor WR, et al. Quantification of methylated markers with a multiplex methylation-specific technology. Clin Chem. 2012;58(2):375–83. https://doi.org/10.1373/clinchem.2011.171264. Epub 2011 Dec 22.

    Article  CAS  PubMed  Google Scholar 

  49. Hill CS. Molecular diagnostic testing for infectious diseases using TMA technology. Expert Rev Mol Diagn. 2001;1(4):445–55.

    Article  CAS  Google Scholar 

  50. McAuley JD, Caglioti S, Williams RC, Robertson GF, Morgan L, Tobler LH, et al. Clinical significance of nondiscriminated reactive results with the Chiron Procleix HIV-1 and HCV assay. Transfusion. 2004;44(1):91–6.

    Article  Google Scholar 

  51. Linnen JM, Deras ML, Cline J, Wu W, Broulik AS, Cory RE, et al. Performance evaluation of the PROCLEIX West Nile virus assay on semi-automated and automated systems. J Med Virol. 2007;79(9):1422–30.

    Article  Google Scholar 

  52. Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, et al. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005;43(1):402–5.

    Article  CAS  Google Scholar 

  53. Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, et al. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991;35(3):273–86.

    Article  CAS  Google Scholar 

  54. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2.

    Article  CAS  Google Scholar 

  55. Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A. 1992;89(1):392–6.

    Article  CAS  Google Scholar 

  56. Spargo CA, Fraiser MS, Van Cleve M, Wright DJ, Nycz CM, Spears PA, et al. Detection of M. Tuberculosis DNA using thermophilic strand displacement amplification. Mol Cell Probes. 1996;10(4):247–56.

    Article  CAS  Google Scholar 

  57. Hellyer TJ, Nadeau JG. Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev Mol Diagn. 2004;4(2):251–61.

    Article  CAS  Google Scholar 

  58. Little MC, Andrews J, Moore R, Bustos S, Jones L, Embres C, et al. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem. 1999;45(6 Pt 1):777–84.

    CAS  PubMed  Google Scholar 

  59. Nadeau JG, Pitner JB, Linn CP, Schram JL, Dean CH, Nycz CM. Real-time, sequence-specific detection of nucleic acids during strand displacement amplification. Anal Biochem. 1999;276(2):177–87.

    Article  CAS  Google Scholar 

  60. Walker GT, Linn CP. Detection of Mycobacterium tuberculosis DNA with thermophilic strand displacement amplification and fluorescence polarization. Clin Chem. 1996;42(10):1604–8.

    CAS  PubMed  Google Scholar 

  61. Walker GT, Nadeau JG, Spears PA, Schram JL, Nycz CM, Shank DD. Multiplex strand displacement amplification (SDA) and detection of DNA sequences from Mycobacterium tuberculosis and other mycobacteria. Nucleic Acids Res. 1994;22(13):2670–7.

    Article  CAS  Google Scholar 

  62. Mazzarelli G, Rindi L, Piccoli P, Scarparo C, Garzelli C, Tortoli E. Evaluation of the BDProbeTec ET system for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary samples: a multicenter study. J Clin Microbiol. 2003;41(4):1779–82.

    Article  CAS  Google Scholar 

  63. Iinuma Y, Senda K, Fujihara N, Saito T, Takakura S, Shimojima M, et al. Comparison of the BDProbeTec ET system with the Cobas Amplicor PCR for direct detection of Mycobacterium tuberculosis in respiratory samples. Eur J Clin Microbiol Infect Dis. 2003;22(6):368–71. Epub 2003 May 16.

    Article  CAS  Google Scholar 

  64. Goessens WH, de Man P, Koeleman JG, Luijendijk A, te Witt R, Endtz HP, et al. Comparison of the COBAS AMPLICOR MTB and BDProbeTec ET assays for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol. 2005;43(6):2563–6.

    Article  CAS  Google Scholar 

  65. Mushanski LM, Brandt K, Coffin N, Levett PN, Horsman GB, Rank EL. Comparison of the BD viper system with XTR technology to the gen-probe APTIMA COMBO 2 assay using the TIGRIS DTS system for the detection of chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens. Sex Transm Dis. 2012;39(7):514–7. https://doi.org/10.1097/OLQ.0b013e31824f2f5b.

    Article  PubMed  Google Scholar 

  66. Chernesky M, Jang D, Gilchrist J, Hatchette T, Poirier A, Flandin JF, et al. Head-to-head comparison of second-generation nucleic acid amplification tests for detection of chlamydia trachomatis and Neisseria gonorrhoeae on urine samples from female subjects and self-collected vaginal swabs. J Clin Microbiol. 2014;52(7):2305–10. https://doi.org/10.1128/JCM.03552-13. Epub 2014 Apr 2.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Van Der Pol B, Liesenfeld O, Williams JA, Taylor SN, Lillis RA, Body BA, et al. Performance of the cobas CT/NG test compared to the Aptima AC2 and viper CTQ/GCQ assays for detection of chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol. 2012;50(7):2244–9. https://doi.org/10.1128/JCM.06481-11. Epub 2012 Apr 18.

    Article  CAS  Google Scholar 

  68. Van Der Pol B, Williams JA, Taylor SN, Cammarata CL, Rivers CA, Body BA, et al. Detection of trichomonas vaginalis DNA by use of self-obtained vaginal swabs with the BD ProbeTec Qx assay on the BD viper system. J Clin Microbiol. 2014;52(3):885–9. https://doi.org/10.1128/JCM.02966-13. Epub 2014 Jan 3.

    Article  Google Scholar 

  69. Lang AL, Roberts C, Mazzulli T, Hatchette TF, LeBlanc JJ. Detection and differentiation of herpes simplex viruses by use of the viper platform: advantages, limitations, and concerns. J Clin Microbiol. 2014;52(6):2186–8. https://doi.org/10.1128/JCM.03636-13. Epub 2014 Apr 2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Van Der Pol B, Warren T, Taylor SN, Martens M, Jerome KR, Mena L, et al. Type-specific identification of anogenital herpes simplex virus infections by use of a commercially available nucleic acid amplification test. J Clin Microbiol. 2012;50(11):3466–71. https://doi.org/10.1128/JCM.01685-12. Epub 2012 Aug 8.

    Article  CAS  Google Scholar 

  71. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

    Article  CAS  Google Scholar 

  72. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289(1):150–4.

    Article  CAS  Google Scholar 

  73. Aoi Y, Hosogai M, Tsuneda S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J Biotechnol. 2006;125(4):484–91.

    Article  CAS  Google Scholar 

  74. Gandelman OA, Church VL, Moore CA, Kiddle G, Carne CA, Parmar S, et al. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One. 2010;5(11):e14155. https://doi.org/10.1371/journal.pone.0014155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, Notomi T, et al. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol Med Microbiol. 2011;62(1):41–8. https://doi.org/10.1111/j.574-695X.2011.00785.x. Epub 2011 Mar 16.

    Article  CAS  PubMed  Google Scholar 

  76. He L, Xu HS, Wang MZ, Rong HN. Development of rapid detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification. Bing Du Xue Bao. 2010;26(6):490–5.

    CAS  PubMed  Google Scholar 

  77. Ren X, Li P. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus. Virus Genes. 2011;42(2):229–35.

    Article  CAS  Google Scholar 

  78. Lalande V, Barrault L, Wadel S, Eckert C, Petit JC, Barbut F. Evaluation of a loop-mediated isothermal amplification assay for diagnosis of Clostridium difficile infections. J Clin Microbiol. 2011;49(7):2714–6.

    Article  Google Scholar 

  79. Noren T, Alriksson I, Andersson J, Akerlund T, Unemo M. Rapid and sensitive loop-mediated isothermal amplification test for Clostridium difficile detection challenges cytotoxin B cell test and culture as gold standard. J Clin Microbiol. 2011;49(2):710–1.

    Article  Google Scholar 

  80. Lloyd A, Pasupuleti V, Thota P, Pant C, Rolston DD, Hernandez AV, et al. Accuracy of loop-mediated isothermal amplification for the diagnosis of Clostridium difficile infection: a systematic review. Diagn Microbiol Infect Dis. 2015;82(1):4–10. https://doi.org/10.1016/j.diagmicrobio.2015.02.007. Epub Feb 23.

    Article  CAS  PubMed  Google Scholar 

  81. Miller SA, Deak E, Humphries R. Comparison of the AmpliVue, BD Max System, and illumigene Molecular Assays for Detection of Group B Streptococcus in Antenatal Screening Specimens. J Clin Microbiol. 2015;53(6):1938–41. https://doi.org/10.1128/JCM.00261-15. Epub 2015 Mar 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Couturier BA, Weight T, Elmer H, Schlaberg R. Antepartum screening for group B Streptococcus by three FDA-cleared molecular tests and effect of shortened enrichment culture on molecular detection rates. J Clin Microbiol. 2014;52(9):3429–32. https://doi.org/10.1128/JCM.01081-14. Epub 2014 Jul 9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Upton A, Bissessor L, Farrell E, Shulman ST, Zheng X, Lennon D. Comparison of illumigene group a streptococcus assay with culture of throat swabs from children with sore throats in the New Zealand school-based rheumatic fever prevention program. J Clin Microbiol. 2016;54(1):153–6. https://doi.org/10.1128/JCM.02440-15. Epub 2015 Nov 11.

    Article  CAS  PubMed  Google Scholar 

  84. Anderson NW, Buchan BW, Mayne D, Mortensen JE, Mackey TL, Ledeboer NA. Multicenter clinical evaluation of the illumigene group A Streptococcus DNA amplification assay for detection of group A Streptococcus from pharyngeal swabs. J Clin Microbiol. 2013;51(5):1474–7. https://doi.org/10.1128/JCM.00176-13. Epub 2013 Feb 27.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Henson AM, Carter D, Todd K, Shulman ST, Zheng X. Detection of Streptococcus pyogenes by use of illumigene group a streptococcus assay. J Clin Microbiol. 2013;51(12):4207–9. https://doi.org/10.1128/JCM.01892-13. Epub 2013 Sep 18.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ratliff AE, Duffy LB, Waites KB. Comparison of the illumigene Mycoplasma DNA amplification assay and culture for detection of Mycoplasma pneumoniae. J Clin Microbiol. 2014;52(4):1060–3. https://doi.org/10.1128/JCM.02913-13. Epub 2014 Jan 15.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Faron ML, Ledeboer NA, Patel A, Beqa SH, Yen-Lieberman B, Kohn D, et al. Multicenter evaluation of meridian bioscience HSV 1&2 molecular assay for detection of herpes simplex virus 1 and 2 from clinical cutaneous and mucocutaneous specimens. J Clin Microbiol. 2016;54(8):2008–13. https://doi.org/10.1128/JCM.00483-16. Epub 2016 May 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rypien C, Chow B, Chan WW, Church DL, Pillai DR. Detection of plasmodium infection by the illumigene malaria assay compared to reference microscopy and real-time PCR. J Clin Microbiol. 2017;55(10):3037–45. https://doi.org/10.1128/JCM.00806-17. Epub 2017 Aug 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lucchi NW, Gaye M, Diallo MA, Goldman IF, Ljolje D, Deme AB, et al. Evaluation of the illumigene Malaria LAMP: a robust molecular diagnostic tool for Malaria parasites. Sci Rep. 2016;6:36808. https://doi.org/10.1038/srep36808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Piera KA, Aziz A, William T, Bell D, Gonzalez IJ, Barber BE, et al. Detection of plasmodium knowlesi, plasmodium falciparum and Plasmodium vivax using loop-mediated isothermal amplification (LAMP) in a co-endemic area in Malaysia. Malar J. 2017;16(1):29. https://doi.org/10.1186/s12936-016-1676-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Petrone BL, Wolff BJ, DeLaney AA, Diaz MH, Winchell JM. Isothermal detection of mycoplasma pneumoniae directly from respiratory clinical specimens. J Clin Microbiol. 2015;53(9):2970–6. https://doi.org/10.1128/JCM.01431-15. Epub 2015 Jul 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reddy S, Ntoyanto S, Sakadavan Y, Reddy T, Mahomed S, Dlamini M, et al. Detecting mycobacterium tuberculosis using the loop-mediated isothermal amplification test in South Africa. Int J Tuberc Lung Dis. 2017;21(10):1154–60. https://doi.org/10.5588/ijtld.16.0863.

    Article  CAS  PubMed  Google Scholar 

  93. Kamachi K, Toyoizumi-Ajisaka H, Toda K, Soeung SC, Sarath S, Nareth Y, et al. Development and evaluation of a loop-mediated isothermal amplification method for rapid diagnosis of Bordetella pertussis infection. J Clin Microbiol. 2006;44(5):1899–902.

    Article  CAS  Google Scholar 

  94. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.

    Article  CAS  Google Scholar 

  95. An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 2005;280(32):28952–8.

    Article  CAS  Google Scholar 

  96. Doseeva V, Forbes T, Wolff J, Khripin Y, O'Neil D, Rothmann T, et al. Multiplex isothermal helicase-dependent amplification assay for detection of chlamydia trachomatis and Neisseria gonorrhoeae. Diagn Microbiol Infect Dis. 2011;71(4):354–65. https://doi.org/10.1016/j.diagmicrobio.2011.08.021. Epub Oct 14.

    Article  CAS  PubMed  Google Scholar 

  97. Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M. Colorimetric detection of helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis. 2008;62(2):119–24.

    Article  CAS  Google Scholar 

  98. Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn. 2007;9(5):639–44.

    Article  CAS  Google Scholar 

  99. Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H. Development of isothermal TaqMan assays for detection of biothreat organisms. BioTechniques. 2008;45(5):543–57.

    Article  CAS  Google Scholar 

  100. Lemieux B, Li Y, Kong H, Tang YW. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses. Expert Rev Mol Diagn. 2012;12(5):437–43. https://doi.org/10.1586/erm.12.34.

    Article  CAS  PubMed  Google Scholar 

  101. Kim HJ, Tong Y, Tang W, Quimson L, Cope VA, Pan X, et al. A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. J Clin Virol. 2011;50(1):26–30. https://doi.org/10.1016/j.jcv.2010.09.006. Epub Oct 14.

    Article  CAS  PubMed  Google Scholar 

  102. Granato PA, Alkins BR, Yen-Lieberman B, Greene WH, Connolly J, Buchan BW, et al. Comparative evaluation of AmpliVue HSV 1+2 assay with ELVIS culture for detecting herpes simplex virus 1 (HSV-1) and HSV-2 in clinical specimens. J Clin Microbiol. 2015;53(12):3922–5. https://doi.org/10.1128/JCM.01905-15. Epub 2015 Oct 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paitan Y, Miller-Roll T, Adler A. Comparative performance study of six commercial molecular assays for rapid detection of toxigenic Clostridium difficile. Clin Microbiol Infect. 2017;23(8):567–72. https://doi.org/10.1016/j.cmi.2017.02.016. Epub Feb 20.

    Article  CAS  PubMed  Google Scholar 

  104. Gaydos CA, Schwebke J, Dombrowski J, Marrazzo J, Coleman J, Silver B, et al. Clinical performance of the Solana(R) point-of-care trichomonas assay from clinician-collected vaginal swabs and urine specimens from symptomatic and asymptomatic women. Expert Rev Mol Diagn. 2017;17(3):303–6. https://doi.org/10.1080/14737159.2017.1282823. Epub 2017 Jan 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Uphoff TS, Buchan BW, Ledeboer NA, Granato PA, Daly JA, Marti TN. Multicenter evaluation of the Solana Group a Streptococcus assay: comparison with culture. J Clin Microbiol. 2016;54(9):2388–90. https://doi.org/10.1128/JCM.01268-16. Epub 2016 Jun 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pierce K, Hopper A, Holt S, Blaschke A, Ampofo K, Korgenski K, et al. Evaluation of the Solana Strep complete assay for the detection of groups A, C and G strep from pediatric throat swabs. J Mol Diagn. 2016;18(6):977–8.

    Google Scholar 

  107. Denys GA. Portrait toxigenic Clostridium difficile assay, an isothermal amplification assay detects toxigenic C. difficile in clinical stool specimens. Expert Rev Mol Diagn. 2014;14(1):17–26. https://doi.org/10.1586/14737159.2014.864239. Epub 2013 Nov 28.

    Article  CAS  PubMed  Google Scholar 

  108. Huang S, Do J, Mahalanabis M, Fan A, Zhao L, Jepeal L, et al. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. PLoS One. 2013;8(3):e60059. https://doi.org/10.1371/journal.pone.0060059. Epub 2013 Mar 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary C. She .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

She, R.C., Schutzbank, T.E., Marlowe, E.M. (2018). Non-PCR Amplification Techniques. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_17

Download citation

Publish with us

Policies and ethics