Skip to main content

Computer-Assisted Surgery: Pros and Cons

  • Living reference work entry
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

Computer navigation is an important method in orthopedic surgery improving the accuracy and precision of surgical interventions. The basic technology of digital imaging with digital cameras has improved to submicron accuracy. The ability to make the surgical targets virtual on a monitor has evolved to the point where the capabilities have exceeded the limitations of cost, complexity, and inefficiency. In addition, various parallel technologies such as intraoperative computed tomography will automate the registration process to a few seconds. Patient-specific cutting guides are another example of the example utilizing preoperative imaging to create custom cutting guides. National joint registry data from Australia have show that long-term revision rates are lower in patients who have had navigated total knees. Detractors still identify the precision problems of imageless registration, and pin complications for the bone anchoring of trackers have a small risk of stress fracture. The overall impression is that various digital imaging systems including robotics, intraoperative computed tomography, and other parallel technologies will produce a “better than not” scenario for the practicing surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heyse TJ, Tibesku CA. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21:268–71.

    Article  PubMed  Google Scholar 

  2. Moon YW, Seo JG, Lim SJ, Yang JH. Variability in femoral component rotation reference axes measured during navigation-assisted total knee arthroplasty using gap technique. J Arthroplasty 2010;25:238–243.

    Google Scholar 

  3. Nam D, Weeks KD, Reinhardt KR, Nawabi DH, Cross MB, Mayman DJ. Accelerometer-based, portable navigation vs. imageless, large-console computer-assisted navigation in total knee arthroplasty: a comparison of radiographic results. J Arthroplasty 2013;28:255–61.

    Google Scholar 

  4. Stiehl JB, Jackson S, Szabo A. Multi-factorial analysis of time efficiency in total knee arthroplasty. J CAS 2009;14:1–5.

    Google Scholar 

  5. Bottros J, Klika AK, Lee HH, Polousky J, Barsoum WK. The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty. 2008;23(1):74–8.

    Article  PubMed  Google Scholar 

  6. Decking R, Markmann Y, Fuchs J, Puhl W, Scharf HP. Leg axis after computer- navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J Arthroplasty. 2005;20:282–8.

    Article  PubMed  Google Scholar 

  7. Dutton JA, Yeo SJ, Yang KY, Lo NN, Chia KU, Chong HC. Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am. 2008;90:2–9.

    Article  PubMed  Google Scholar 

  8. Fu Y, Wang M, Liu Y, Fu Q. Alignment outcomes in navigated total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1075–82.

    Article  PubMed  Google Scholar 

  9. Hart R, Janecek M, Chaker A, Bucek P. Total knee arthroplasty implanted with and without kinematic navigation. Int Orthop. 2003;27:366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK. Meta-analysis of navigation vs. conventional total knee arthroplasty. J Arthroplasty. 2012;27(6):1177–82.

    Article  PubMed  Google Scholar 

  11. Jenny JY, Clemens U, Kohler S, Kiefer H, Konermann W, Miehlke RK. Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty. 2005;20:832–9.

    Article  PubMed  Google Scholar 

  12. Jenny JY, Boeri C. Computer-assisted implantation of total knee prostheses: a case-control comparative study with classical instrumentation. Comput Aided Surg. 2001;6:217–20.

    Article  CAS  PubMed  Google Scholar 

  13. Kalairag Y, Cossey AJ, Verall GM, Ludbrook G, Spriggins AJ. Are systemic emboli reduced in computer assisted surgery. J Bone Joint Surg. 2005;88B:198–202.

    Google Scholar 

  14. Kim SJ, MacDonald M, Hernandez J, Wixson RL. Computer assisted navigation in total knee arthroplasty: improved coronal alignment. J Arthroplasty. 2005;20:123–31.

    Article  PubMed  Google Scholar 

  15. Moskal JT, Capps SG, Mann JW, Scanelli JA. Navigated versus conventional total knee arthroplasty. J Knee Surg. 2014;27(3):235–48.

    Article  PubMed  Google Scholar 

  16. Perlick L, Bathis H, Tingart M, Perlick C, Grifka J. Navigation in total-knee arthroplasty: CT-based implantation compared with conventional technique. Acta Orthop Scand. 2004;75:464–70.

    Article  PubMed  Google Scholar 

  17. Perlick L, Bathis H, Lerch K, Luring C, Tingart M, Grifka J. Navigated implantation of total knee endoprostheses in secondary knee osteoarthritis of rheumatoid arthritis patients as compared to conventional technique. Z Rheumatol. 2004;63:140–6.

    Article  CAS  PubMed  Google Scholar 

  18. Qureshi S, Lu Y, McAnany S, et al. Three-dimensional intraoperative imaging modalities in orthopedic surgery: a narrative review. J Am Acad Orthop Surg. 2014;22:800–9.

    Article  PubMed  Google Scholar 

  19. Song EK, Seon JK, Yoon TR, Park SJ, Cho SG, Yim JH. Comparative study of stability after total knee arthroplasties between navigation system and conventional techniques. J Arthroplasty. 2007;22(8):1107–11.

    Article  PubMed  Google Scholar 

  20. Stulberg SD, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: results of an initial experience of thirty five patients. J Bone Joint Surg Am. 2002;84A:90–8.

    Google Scholar 

  21. Zhang GQ, Chen JY, Chai W, Liu M, Wang Y. Comparison between computer-assisted-navigation and conventional total knee arthroplasties in patients undergoing simultaneous bilateral procedures: a randomized clinical trial. J Bone Joint Surg Am. 2011;93(13):1190–6.

    Article  PubMed  Google Scholar 

  22. Brin YS, Nikolaou VS, Joseph L, Zukor DJ, Antoniou J. Imageless computer assisted versus conventional total knee replacement. a Bayesian meta-analysis of 23 comparative studies. Int Orthop. 2011;35(3):331–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng T, Zhao S, Peng X, Zhang X, Zhang X. Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc. 2012;20:1307–22.

    Article  PubMed  Google Scholar 

  24. Khakha RS, Chowdhry M, Norris M, Kheiran A, Chauhan SK. Low incidence of complications in computer assisted total knee arthroplasty-A retrospective review of 1596 cases. Knee. 2015. doi:10.1016/j.knee.2015.02.009. [Epub ahead of print].

    Google Scholar 

  25. Kuzyk PR, Higgins GA, Tunggal JA, Sellan ME, Waddell JP, Schemitsch EH. Computer navigation vs. extramedullary guide for sagittal alignment of tibial components: radiographic study and meta-analysis. J Arthroplasty. 2012;27(4):630–7.

    Article  PubMed  Google Scholar 

  26. De Steiger RN, Liu Y-L, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg. 2015;97:635–42.

    Article  PubMed  Google Scholar 

  27. Millar NL, Deakin AH, Millar LL, Kinnimonth AW, Picard F. Blood loss following total knee replacement in the morbidly obese: effects of computer navigation. Knee. 2011;18(2):108–12.

    Article  PubMed  Google Scholar 

  28. Schnurr C, Csécsei G, Eysel P, König DP. The effect of computer navigation on blood loss and transfusion rate in TKA. Orthopedics. 2010;33(7):474.

    PubMed  Google Scholar 

  29. Young KL, Dunbar MJ, Richardson G, Astephen Wilson JL. Modern abbreviated computer navigation of the femur reduces blood loss in total knee arthroplasty. J Arthroplasty. 2015. doi:10.1016/j.arth.2015.04.020. [Epub ahead of print].

    Google Scholar 

  30. Kalairag Y, Simpson P, Cossey AJ, Verrall GM, Spriggins AJ. Blood loss after total knee arthroplasty, effects of computer assisted surgery. J Bone Joint Surg. 2005;87B:1480–2.

    Article  Google Scholar 

  31. McConnell J, Dillon J, Kinninmonth A, Sarungi M, Picard F. Blood loss following total knee replacement is reduced when using computer-assisted versus standard methods. Acta Orthop Belg. 2012;78(1):75–9.

    PubMed  Google Scholar 

  32. Ishida K, Matsumoto T, Tsumura N, Kubo S, Kitagawa A, Chin T, Iguchi T, Kurosaka M, Kuroda R. Mid-term outcomes of computer-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1107–12.

    Article  PubMed  Google Scholar 

  33. Lützner J, Günther KP, Kirschner S. Functional outcome after computer-assisted versus conventional total knee arthroplasty: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc. 2010;18(10):1339–44.

    Article  PubMed  Google Scholar 

  34. Gøthesen O, Espehaug B, Havelin LI, Petursson G, Hallan G, Strøm E, Dyrhovden G, Furnes O. Functional outcome and alignment in computer-assisted and conventionally operated total knee replacements: a multicentre parallel-group randomised controlled trial. Bone Joint J. 2014;96-B(5):609–18.

    Article  PubMed  Google Scholar 

  35. Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br. 2012;94(2):194–9.

    Article  PubMed  Google Scholar 

  36. Heyse TJ, Chong LR, Davis J, et al. MRI analysis for rotation of total knee components. Knee. 2012;19:571–5.

    Article  PubMed  Google Scholar 

  37. Victor J, Van Doninck D, Labey L, et al. How precise can bony landmarks be determined on a CT scan of the knee? Knee. 2009;16:358–65.

    Article  CAS  PubMed  Google Scholar 

  38. Roper GE, Bloemke AD, Roberts CC, et al. Analysis of tibial component rotation following total knee arthroplasty using 3D high definition computed tomography. J Arthroplasty. 2013;28(Supp 1):106–11.

    Article  PubMed  Google Scholar 

  39. Kuriyama S, Hyakuna K, Inoue S, Tamaki Y, Ito H, Matsuda S. Tibial rotational alignment was significantly improved by use of a CT-navigated control device in total knee arthroplasty. J Arthroplasty. 2014;29(12):2352–6.

    Article  PubMed  Google Scholar 

  40. Joseph J, Simpson PM, Whitehouse SL, English HW, Donnelly WJ. The use of navigation to achieve soft tissue balance in total knee arthroplasty – a randomised clinical study. Knee. 2013;20(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  41. Pang HN, Yeo SJ, Chong HC, Chin PL, Ong J, Lo NN. Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc. 2011;19(9):1496–503.

    Article  PubMed  Google Scholar 

  42. Stiehl JB, Heck DA. How precise is computer assisted gap assessment in navigated total knee replacement. Clin Orthop Relat Res. 2015;473:115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Walde TA, Bussert J, Sehmisch S, Balcarek P, Stürmer KM, Walde HJ, Frosch KH. Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension. Knee. 2010;17(6):381–6.

    Article  CAS  PubMed  Google Scholar 

  44. Hino K, Ishimaru M, Iseki Y, Watanabe S, Onishi Y, Miura H. Mid-flexion laxity is greater after posterior-stabilised total knee replacement than with cruciate-retaining procedures: a computer navigation study. Bone Joint J. 2013;95-B(4):493–7.

    Article  CAS  PubMed  Google Scholar 

  45. Colle F, Bignozzi S, Lopomo N, Zaffagnini S, Sun L, Marcacci M. Knee functional flexion axis in osteoarthritic patients: comparison in vivo with transepicondylar axis using a navigation system. KRSST 2012;20:552058.

    Google Scholar 

  46. Matziolis G, Pfiel S, Wassilew G, Boenicke H, Perka C. Kinematic analysis of the flexion axis for correct femoral component placement. Knee Surg Sports Traumatol Arthrosc. 2011;19(9):1504–9.

    Article  PubMed  Google Scholar 

  47. Siston RA, Cromie MJ, Gold GE, Goodman SB, Delp SL, Maloney WJ, Giori NJ. Averaging different alignment axes improves femoral rotational alignment in computer-navigated total knee arthroplasty. J Bone Joint Surg Am. 2008;90:2098–104.

    Article  PubMed  Google Scholar 

  48. Young KL, Dunbar MJ, Richardson G, Astephen Wilson JL. Intraoperative passive knee kinematics during total knee arthroplasty surgery. J Orthop Res. 2015. doi:10.1002/jor.22945. [Epub ahead of print].

    Google Scholar 

  49. Catani F, Digennaro V, Ensini A, Leardini A, Giannini S. Navigation-assisted total knee arthroplasty in knees with osteoarthritis due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):546–51.

    Article  PubMed  Google Scholar 

  50. Kim KK, Heo YM, Won YY, Lee WS. Navigation-assisted total knee arthroplasty for the knee retaining femoral intramedullary nail, and distal femoral plate and screws. Clin Orthop Surg. 2011;3(1):77–80.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuo CC, Bosque J, Meehan JP, Jamali AA. Computer-assisted navigation of total knee arthroplasty for osteoarthritis in a patient with severe posttraumatic femoral deformity. J Arthroplasty. 2011;26(6):976.

    Article  PubMed  Google Scholar 

  52. Mullaji A, Lingaraju AP, Shetty GM. Computer-assisted total knee replacement in patients with arthritis and a recurvatum deformity. J Bone Joint Surg Br. 2012;94(5):642–7.

    Article  CAS  PubMed  Google Scholar 

  53. Mullaji AB, Shetty GM, Kanna R, Vadapalli RC. The influence of preoperative deformity on valgus correction angle: an analysis of 503 total knee arthroplasties. J Arthroplasty. 2013;28(1):20–7.

    Article  PubMed  Google Scholar 

  54. Burnett RSJ, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res. 2013;471:264–76.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Haaker RG, Stockheim M, Kamp M, Proff G, Breitenfelder J, Ottersbach A. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop Rel Res. 2005;433:152–9.

    Google Scholar 

  56. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A. Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br. 2003;85(6):830–5.

    Google Scholar 

  57. Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res. 2004;428:131–9.

    Google Scholar 

  58. Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone and Joint Surg. 2004;86B:682–87.

    Google Scholar 

  59. Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty. J Arthroplasty. 2005;20:132–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Stiehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Stiehl, J. (2016). Computer-Assisted Surgery: Pros and Cons. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-3-319-15206-6_113-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15206-6_113-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15206-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics