Skip to main content

Aloe Species as Valuable Sources of Functional Bioactives

  • Chapter
  • First Online:
Functional Foods and Nutraceuticals

Abstract

The genus Aloe is an exceptional plant group of Xanthorrhoeaceae family with approximately 500 species. The Aloe species is a novel source of natural antioxidants and bioactive compounds which can be isolated from various parts (leaves, roots and flowers). More than 130 phytoconstituents of different class have been reported from this genus which includes phenolic compounds, flavonoids, phytosterols, glycoproteins, coumarins, alkaloids, pyrones, anthrones, naphthalenes, indoles, anthraquinones (aloe-emodin, aloins, aloectic and barbaloin), alkanes, aldehydes, ketones and dicarboxylic acids with potential toxicological and biological activities. Aloe species are widely used as therapeutic and topical agents due its medicinal and pharmacological properties like anti-bacterial, anti-fungal, anti-viral, antioxidant, anti-diabetic, anticancer, anti-inflammatory and anti-hyperlipidemic properties. This review article aimed at the phytochemistry, pharmacotherapy and toxicological profile of the Aloe Genus plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 26 August 2022

    In the original version of this book, the initial of one of the co-author’s name was incorrectly published as M. Deepak which should have been published as S. Deepak. The author’s correct name has now been updated in this revised version of the book.

References

  • Abdissa D, Geleta G, Bacha K, Abdissa N (2017) Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS One 12(3):e0173882. https://doi.org/10.1371/journal.pone.0173882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adetunji CO, Afolayan SS, Olaleye OO, Umanah JT (2011) Antibacterial activity of Aloe vera extracts of clinical isolates. Int J Microbiol 3(1):20–25

    Google Scholar 

  • Adhikari M, Sah AK, Joshi DR (2018) In vitro antibacterial activity of organic extracts of Aloe barbadensis against multi-drug resistant Pseudomonas aeruginosa isolated from wound specimens. TUJM 5(1):69–76

    Google Scholar 

  • Ali MI, Shalaby NMM, Elgamal MHA, Mousa ASM (1999) Antifungal effects of different plant extracts and their major components of selected Aloe species. Phytother Res 13:401–407

    Article  CAS  PubMed  Google Scholar 

  • Ali K, Ahmed B, Khan MS, Musarrat J (2018) Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles. J Photochem Photobiol B Biol 188:146–158

    Article  CAS  Google Scholar 

  • Altaf M, Jaganyi D (2016) Characterization of triangular gold nanoparticles using aloe arborescens leaf extract: a green synthesis approach. Synth React Inorg Met-Org Nano-Met Chem 46(9):1332–1335

    Article  CAS  Google Scholar 

  • Amoo SO, Aremu AO, Van Staden J (2014) Unraveling the medicinal potential of South African aloe species. J Ethnopharmacol 153:19–41. https://doi.org/10.1016/j.jep.2014.01.036

    Article  CAS  PubMed  Google Scholar 

  • Anand S, Muthusamy V, Sujatha S, Sangeetha K, Raja RB, Sudhagar S, Devi NP, Lakshmi B (2010) Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in l6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett 584:3170–3178. https://doi.org/10.1016/j.febslet.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  • Arosio B, Gagliano N, Fusaro LMP, Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C, Annoni G (2000) Aloe-emodin quinone pretreatment reduces acute liver injury induced by carbon tetrachloride. Pharmacol Toxicol 87:229–233. https://doi.org/10.1034/j.1600-0773.2000.d01-79.x

    Article  CAS  PubMed  Google Scholar 

  • Arowosegbe S, Wintola OA, Afolayan AJ (2012) Phytochemical constituents and allelopathic effect of Aloe ferox Mill. root extract on tomato. J Med Plant Res 6(11):2094–2099

    Google Scholar 

  • Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci 5(5):572–576

    CAS  Google Scholar 

  • Asamenew G, Bisrat D, Mazumder A, Asres K (2011) In vitro antimicrobial and antioxidant activities of anthrone and chromone from the latex of aloe harlana Reynolds. Phytother Res 25:1756–1760. https://doi.org/10.1002/ptr.3482

    Article  CAS  PubMed  Google Scholar 

  • Azghani AO, Williams I et al (1995) A beta-linked mannan inhibits adherence of Pseudomonas aeruginosa to human lung epithelial cells. Glycobiology 5(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Begum H, Shimmi SC, Rowshan MM, Khanom S (2016) Effect of Ethanolic extract of Aloe vera gel on certain common clinical pathogens. Borneo J Med Sci 10(2):19–25

    Google Scholar 

  • Beppu H, Shimpo K, Chihara T, Kaneko T, Tamai I, Yamaji S, Ozaki S, Kuzuya H, Sonoda S (2006) Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J Ethnopharmacol 103(3):468–477. https://doi.org/10.1016/j.jep.2005.10.034

    Article  PubMed  Google Scholar 

  • Bhagwat TR, Joshi KA, Parihar VS, Asok A, Bellare J, Ghosh S (2018) Biogenic copper nanoparticles from medicinal plants as novel antidiabetic nanomedicine. World J Pharm Res 7(4):183–196

    Google Scholar 

  • Bisrat D, Dagne E, van Wyk B-E, Viljoen A (2000) Chromones and anthrones from Aloe marlothii and Aloe rupestris. Phytochemistry 55(8):949–952

    Article  CAS  PubMed  Google Scholar 

  • Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A (2006) Medicinal plants with potential antidiabetic activity-A review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab 14:1–25

    Article  Google Scholar 

  • Boban PT, Nambisan B, Sudhakaran PR (2006) Hypolipidemic effect of chemically different mucilages in rats: a comparative study. Br J Nutr 96:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Borges-Argáez R, Chan-Balan R, Cetina-Montejo L, Ayora-Talavera G, Sansores-Peraza P, Gómez-Carballo J, Cáceres-Farfán M (2019) In vitro evaluation of anthraquinones from Aloe vera (Aloe barbadensis Miller) roots and several derivatives against strains of influenza virus. Ind Crops Prod 132:468–475. https://doi.org/10.1016/j.indcrop.2019.02.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bottenberg MM, Wall GC, Harvey RL, Habib S (2007) Oral Aloe vera-induced hepatitis. Ann Pharmacother 41:1740–1743

    Article  PubMed  Google Scholar 

  • Boudreau MD, Beland FA (2006) An evaluation of the biological and toxicological properties of Aloe barbadensis (Miller), Aloe vera. J Environ Sci Health Care 24:103–154

    Article  CAS  Google Scholar 

  • Boudreau MD, Mellick PW, Olson GR, Felton RP, Thorn BT, Beland FA (2013a) Clear evidence of carcinogenic activity by a whole-leaf extract of aloe barbadensis miller (Aloe vera) in F344/n rats. Toxicol Sci 131:26–39

    Article  CAS  PubMed  Google Scholar 

  • Boudreau MD, Beland FA, Nichols JA, Pogribna M (2013b) Toxicology and carcinogenesis studies of a nondecolorized [corrected] whole leaf extract of Aloe barbadensis Miller (Aloe vera) in F344/N rats and B6C3F1 mice (drinking water study). Natl Toxicol Program Tech Rep Ser 577:1–266

    Google Scholar 

  • Bozzi A, Perrin C, Austin S, Arce Vera F (2007) Quality and authenticity of commercial aloe vera gel powders. Food Chem 103(1):22–30

    Article  CAS  Google Scholar 

  • Brinker FJ (1998) Herbal contraindications and drug interactions, 2nd edn. Eclectic Medical Publications, Sany, pp 28–30

    Google Scholar 

  • Budai MM, Varga A, Milesz S, Tőzsér J, Benkő S (2013) Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol 56:471–479. https://doi.org/10.1016/j.molimm.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  • Bukhari S, Nawaz H, Tariq S, Muneer A (2017) In vitro antimicrobial activity of Aloe vera gel on selected urinary pathogens. Biomedica 33(1):39–42

    Google Scholar 

  • Byeon S, Pelley R, Ullrich SE, Waller TA, Bucana CD, Strickland FM (1988) Aloe barbadensis extracts reduce the production of interleukin-10 after exposure to ultraviolet radiation. J Invest Dermatol 110:811–817

    Article  Google Scholar 

  • Casley-Smith JR, Morgan RG et al (1993) Treatment of lymphedema of the arms and legs with 5, 6-benzo-[alpha]-pyrone. N Engl J Med 329(16):1158–1163

    Article  CAS  PubMed  Google Scholar 

  • Cardarelli M, Rouphael Y, Pellizzoni M, Colla G, Lucini L (2017) Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen aloe species. Ind Crops Prod 108:44–51. https://doi.org/10.1016/j.indcrop.2017.06.017. [CrossRef] [Google Scholar]

    Article  CAS  Google Scholar 

  • Castillo S, Navarro D, Zapata P, Guillén F, Valero D, Serrano M, Martínez-Romero D (2010) Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biol Technol 57:183–188. https://doi.org/10.1016/j.postharvbio.2010.04.006

    Article  CAS  Google Scholar 

  • Cellini L, Di Bartolomeo S, Di Campli E, Genovese S, Locatelli M, Di Giulio M (2014) In vitro activity of aloe vera inner gel against helicobacter pylori strains. Lett Appl Microbiol 59:43–48. https://doi.org/10.1111/lam.12241

    Article  CAS  PubMed  Google Scholar 

  • Chandan BK, Saxena AK, Shukla S, Sharma N, Gupta DK, Suri KA, Suri J, Bhadauria M, Singh B (2007) Hepatoprotective potential of Aloe barbadensis Mill. against carbon tetrachloride induced hepatotoxicity. J Ethnopharmacol 111:560–566

    Article  CAS  PubMed  Google Scholar 

  • Chandrakar M, Palekar S, Chirade S, Hafiz S (2008) Hypocholesterolemic effect of Aloe vera (L.) extract on high cholesterol fed Calotes versicolor Daudin. Asian J ExpSci 22(3):295–298

    Google Scholar 

  • Chandran RP, Divakaran D, Consortium OSDD (2017) Isolation and characterization of antimycobacterial compounds from the leaf of Aloe vera (L.) Burm. f. J Appl Pharm Sci 7(02):217–222

    CAS  Google Scholar 

  • Chang XL, Feng YM, Wang WH (2011) Comparison of the polysaccharides isolated from skin juice, gel juice and flower of Aloe arborescens tissues. J Taiwan Inst Chem Eng 42(1):13–19. https://doi.org/10.1016/j.jtice.2010.04.008

    Article  CAS  Google Scholar 

  • Chen W, Van Wyk B-E et al (2012) Cape aloes—a review of the phytochemistry, pharmacology and commercialisation of Aloe ferox. Phytochem Lett 5(1):1–12

    Article  CAS  Google Scholar 

  • Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, Kuo HM, Wu PP, Lee TH, Chung JG (2011) Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem Res Toxicol 24:20–29

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Lee S, Lee M-J, Lee DH, Won C-H, Kim SM, Chung JH (2009) Dietary Aloe vera supplementation improves facial wrinkles and elasticity and it increases the type 1 procollagen gene expression in human skin in vivo. Ann Dermatol 21:6–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi S, Chung M-H (2003) A review on the relationship between Aloe vera components and their biologic effects. Semin Integr Med 1:53–62

    Article  Google Scholar 

  • Cock IE (2007) Antimicrobial activity of Aloe barbadensis Miller Leaf gel components. Internet J Microbiol 4(2):57–61

    Google Scholar 

  • Cock I (2015) The genus aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In: Novel natural products: Therapeutic effects in pain, arthritis and gastro-intestinal diseases. Springer, Berlin, pp 179–235

    Chapter  Google Scholar 

  • Confalone PN, Huie EM, Patel NG (1983) The isolation, structure determination, and synthesis of pluridone, a novel insecticide from. Tetrahedron Lett 24(50):5563–5566

    Google Scholar 

  • Conner JM, Gray AI, Reynolds T, Waterman PG (1987) Anthraquinone, anthrone and phenylpyrone components of Aloe nyeriensisvar. kedongensis leaf exudate. Phytochemistry 26:2995

    Google Scholar 

  • Conner JM, Gray AI, Reynolds T, Waterman PG (1990) Phytochemistry 29:941

    Article  CAS  Google Scholar 

  • Cosmetic Ingredient Review Expert Panel (2007) Final report on the safety assessment of Aloe Andongensis extract, Aloe Andongensis leaf juice, aloe Arborescens leaf extract, Aloe Arborescens Leaf juice, Aloe Arborescens Leaf protoplasts, Aloe Barbadensis flower extract, Aloe Barbadensis leaf, Aloe Barbadensis leaf extract, Aloe Barbadensis leaf juice, aloe Barbadensis leaf polysaccharides, Aloe Barbadensis leaf water, Aloe Ferox leaf extract, Aloe Ferox leaf juice, and Aloe Ferox leaf juice extract. Int J Toxicol 26(Suppl 2):1–50

    Google Scholar 

  • Costa TM, Tavares LBB et al (2016) Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol 100(15):6571–6584

    Article  CAS  PubMed  Google Scholar 

  • Cottam G, Curtis JT (1956) The use of distance measures in phytosociological sampling. Ecology 37(3):451–460

    Article  Google Scholar 

  • Curciarello J, De Ortuzar S, Borzi S, Bosia D (2008) Severe acute hepatitis associated with intake of Aloe vera tea. Gastroenterol Hepatol 31:436–438

    Article  PubMed  Google Scholar 

  • Dagne E, Alemu M (1991) Constituents of the leaves of four Aloe species from Ethiopia, Bull Chem Soc Ethiop 5:87

    Google Scholar 

  • Dagne E, Bisrat D, Van Wyk BE, Viljoen AM, Hellwig V, Steglich W (1997) Phytochemistry 44:1271

    Article  CAS  Google Scholar 

  • Dagne E, Bisrat D, Viljoen A, van Wyk BE (2000) Chemistry of Aloe species. Curr Org Chem 4(10):1055–1078

    Article  CAS  Google Scholar 

  • Dana N, Javanmard SH, Asgary S, Asnaashari H, Abdian N (2012) The effect of Aloe vera leaf gel on fatty streak formation in hypercholesterolemic rabbits. J Res Med Sci 17:439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Mishra B, Gill K, Ashraf MS, Singh AK, Sinha M, Sharma S, Xess I, Dalal K, Singh TP (2011) Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from Aloe vera leaf gel. Int J Biol Macromol 48:38–43. https://doi.org/10.1016/j.ijbiomac.2010.09.010. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  • De Rodrýguez DJ, Hernández-Castillo D, Rodrýguez-Garcýa R, Angulo-Sánchez J (2005) Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crop Prod 21:81–87. https://doi.org/10.1016/j.indcrop.2004.01.002

    Article  Google Scholar 

  • Debnath T, Ghosh M, Lee YM, Nath NCD, Lee K-G, Lim BO (2018) Identification of phenolic constituents and antioxidant activity of Aloe barbadensis flower extracts. Food Agric Immunol 29(1):27–38. https://doi.org/10.1080/09540105.2017.1358254

    Article  CAS  Google Scholar 

  • Dell’Agli M, Giavarini F, Ferraboschi P, Galli G, Enrica Bosisio Masaldan S, Iyer VV (2014) Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions. J Appl Toxicol 34:95–104. https://doi.org/10.1002/jat.2838

    Article  CAS  Google Scholar 

  • Denius HR, Homann PH (1972) The relation between photosynthesis, respiration, and Crassulacean acid metabolism in leaf slices of Aloe arborescens Mill. Plant Physiol 49(6):873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai BN, Maharjan RH, Nampoothiri LP (2012) Aloe barbadensis mill. Formulation restores lipid profile to normal in a letrozole-induced polycystic ovarian syndrome rat model. Pharmacogn Res 4:109

    Article  Google Scholar 

  • Devi P, Thakur A, Bhardwaj SK, Saini S, Rajput P, Kumar P (2018) Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots. J Mater Sci Mater Electron 29(20):17254–17261

    Article  CAS  Google Scholar 

  • Dharajiya D, Pagi N, Jasani H, Patel P (2017) Antimicrobial activity and phytochemical screening of Aloe vera (Aloe barbadensis Miller). Int J Curr Microbiol App Sci 6:2152–2162

    CAS  Google Scholar 

  • Dhingra D, Lamba D, Kumar R, Nath P, Gauttam S (2014) Antihyperlipidemic activity of Aloe succotrinain rats: possibly mediated by inhibition of hmg-coa reductase. ISRN Pharmacol 2014. https://doi.org/10.1155/2014/243575

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529

    Article  PubMed  Google Scholar 

  • Duri L, Morelli CF, Crippa S, Speranza G (2004) 6-Phenylpyrones and 5 methylchromones from Kenya aloe. Fitoterapia 75:520

    Article  CAS  PubMed  Google Scholar 

  • Eamlamnam K, Patumraj S, Visedopas N, Thong-Ngam D (2006) Effects of Aloe vera and sucralfate on gastric microcirculatory changes, cytokine levels and gastric ulcer healing in rats. World J Gastroenterol 12:2034. https://doi.org/10.3748/wjg.v12.i13.2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EMA (2006) Community herbal monograph on Aloe barbadensis MILLER and on Aloe (various species, mainly Aloe ferox MILLER and its hybrids). European Medicines Agency, London

    Google Scholar 

  • Erhabor JO, Idu MD (2017) Aphrodisiac potentials of the ethanol extract of Aloe barbadensis Mill. root in male Wistar rats. BMC Complement Altern Med 17(1):360. https://doi.org/10.1186/s12906-017-1866-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst E (2000) The usage of complementary therapies by dermatological patients: a systematic review. Br J Dermatol 142(5):857–861

    Google Scholar 

  • Escobar-Sierra DM, Perea-Mesa YP (2017) Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications. DYNA 84(203):134–142

    Article  Google Scholar 

  • Eshun K, Qian H (2004) Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries—a review. Crit Rev Food Sci Nutr 44:91–96

    Article  PubMed  Google Scholar 

  • Esmat AY, Tomasetto C, Rio MC (2006) Cytotoxicity of a natural anthraquinone (aloin) against human breast cancer cell lines with and without ErbB 2-topoisomerase IIα coamplification. Cancer Biol Ther 5:97–103

    Article  CAS  PubMed  Google Scholar 

  • Fani M, Kohante J (2012) Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria. J Oral Sci 54(1):15–21

    Article  PubMed  Google Scholar 

  • Fantus B (1922) Aloes as a medicine. J Am Pharm Assoc (11):616–619

    Google Scholar 

  • Femenia A, Sanchez E, Simal S, Rosello S, C. (1999) Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym 39:109–117

    Article  CAS  Google Scholar 

  • Fogleman RW, Chapdelaine JM, Carpenter RH, McAnalley BH (1992) Toxicologic evaluation of injectable acemannan in the mouse, rat and dog. Vet Hum Toxicol 34:201–205

    CAS  PubMed  Google Scholar 

  • Foster M, Hunter D, Samman S (2011) Evaluation of the nutritional and metabolic effects of Aloe vera. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Giddy C (1973) Aloes from seed. Veld Flora 59:41

    Google Scholar 

  • Grace OM (2011) Current perspectives on the economic botany of the genus Aloe L. (Xanthorrhoeaceae). S Afr J Bot 77(4):980–987

    Article  Google Scholar 

  • Grace OM, Kokubun T, Veitch NC, Simmonds MSJ (2008) Characterisation of a nataloin derivative from Aloe ellenbeckii, a maculate species from east Africa South African. Journal of Botany 74:761–763

    CAS  Google Scholar 

  • Graf E, Alexa M (1982) p-Cumarsäure-methylester in Kap-Aloe. Arch Pharm 315:969

    Google Scholar 

  • Grčić N, Dias ACP, Capela PA (2016) Evaluation of gel production and antiradicalar activity in several Aloe species. PhOL 1:233

    Google Scholar 

  • Grindlay D, Reynolds T (1986) The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16(2–3):117–151

    Article  CAS  PubMed  Google Scholar 

  • Guessan KE, Kouakou TH (2017) Phytochemical and evaluation of hypoglycemic effect of leaves extract of Aloe buettneri A. Berger (liliaceae) in normal and alloxan-induced diabetic mice. J Pharmacogn Phytochem 6(5):768–775

    Google Scholar 

  • Guo X, Mei N (2016) Aloe vera: a review of toxicity and adverse clinical effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(2):77–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Mei N, Xia Q, Chen T, Chan PC, Fu PP (2010) Gene expression profiling as an initial approach for mechanistic studies of toxicity and tumorigenicity of herbal plants and herbal dietary supplements. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 28:60–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo X, Zhang S, Dial SL, Boudreau MD, Xia Q, Fu PP, Levy DD, Moore MM, Mei N (2014) In vitro investigation of the mutagenic potential of Aloevera extracts. Toxicol Res 3:487–496

    Article  CAS  Google Scholar 

  • Gutterman Y, Chauser-Volfson E (2000) The distribution of the phenolic metabolites barbaloin, aloeresin and aloenin as a peripheral defense strategy in the succulent leaf parts of Aloe arborescens. Biochem Syst Ecol 28(9):825–838

    Article  CAS  PubMed  Google Scholar 

  • Hamiza O, Rehman M, Khan R, Tahir M, Khan A, Lateef A, Sultana S (2014) Chemopreventive effects of aloin against 1,2-dimethylhydrazine-induced preneoplastic lesions in the colon of wistar rats. Hum Exp Toxicol 33:148–163. https://doi.org/10.1177/0960327113493307

    Article  CAS  PubMed  Google Scholar 

  • Hammeso WW, Emiru YK, Getahun KA, Kahaliw W (2019) Antidiabetic and Antihyperlipidemic activities of the leaf latex extract of Aloe megalacantha Baker (Aloaceae) in Streptozotocin-induced diabetic model. Evid Based Complementary Alternat Med, Article ID 8263786, 9 pages, 2019. https://doi.org/10.1155/2019/8263786

  • Haroon SM, Shahid S, Hussain SA, Raza H (2018) Comparative study of antioxidant activity of flower of Aloe vera and Leaf extract of Aloe ferox. J Basic Appl Sci 14:191–196

    Article  CAS  Google Scholar 

  • Heggers JP, Kucukcelebi A et al (1995) Wound healing effects of Aloe gel and other topical antibacterial agents on rat skin. Phytother Res 9(6):455–457

    Article  CAS  Google Scholar 

  • Herlihy JT, Bertrand HA, Kim JD, Ikeno Y, Yu BP (1998a) Effects of aloe vera ingestion in the rat I. growth, food and fluid intake and serum chemistry. Phytother Res 12:183–188

    Article  Google Scholar 

  • Herlihy JT, Kim JD, Katu DN, Nelson JF, Ward WF, Ikeno Y, Yu BP (1998b) Effects of aloe vera ingestion in the rat. II. Hormonal and metabolic characteristics. Phytother Res 12:355–360

    Article  CAS  Google Scholar 

  • Holland P (1978) An evolutionary biogeography of the genus Aloe. J Biogeogr 5:213–226

    Article  Google Scholar 

  • Holzapfel CW, Wessels PL, Van Wyk BE, Marais W, Portwig M (1997) Chromone and aloin derivatives from Aloe broomii, A. Africana and A. speciosa. Phytochemistry 45:97

    Google Scholar 

  • Hu Y, Xu J et al (2003) Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts. J Agric Food Chem 51(26):7788–7791

    Article  CAS  PubMed  Google Scholar 

  • Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH (2012) Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Planta Med 78:311–316. https://doi.org/10.1055/s-0031-1280474

    Article  CAS  PubMed  Google Scholar 

  • Hutter JA, Salman M, Stavinoha WB, Satsangi N, Williams RF, Streeper RT, Weintraub ST (1996) Antiinflammatory C-glucosyl chromone from Aloe barbadensis, J Nat Prod 59:541

    Google Scholar 

  • IASC (2013) Aloe vera quality standard. International Aloe Science Council, Silver Spring, MD, USA. Available from: http://iasc.org/pdfs/AloeVeraQualityStandard.pdf. Accessed 3 June 2014

  • Jahanian E, Karimifar M, Rafieian-Kopaei M (2016) Antioxidants as a novel way to alleviate the adverse effects of oxidative stress in osteoporosis. J Parathyr Dis 4(2):60–65.

    Google Scholar 

  • Jain N, Vijayaraghavan R, Pant SC, Lomash V, Ali M (2010) Aloe vera gel alleviates cardiotoxicity in streptozocin-induced diabetes in rats. J Pharm Pharmacol 62:115–123. https://doi.org/10.1211/jpp.62.01.0013

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Farrow TM (2005) 7-Hydroxy Chromones as potent antioxidants. 6,884,783. U.S. Patent. 2005 Apr 26

    Google Scholar 

  • Jia Y, Zhao G, Jia J (2008) Preliminary evaluation: the effects of Aloe ferox Miller and Aloe arborescens Miller on wound healing. J Ethnopharmacol 120(2):181–189

    Article  PubMed  Google Scholar 

  • Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L Qin LP et al (2012) Potential antiosteoporotic agents from plants: a comprehensive review. Evid Based Complement Alternat Med 1–28. https://doi.org/10.1155/2012/364604

  • Johnson DB, Shringi B, Patidar DK, Chalichem NSS, Javvadi AK (2011) Screening of antimicrobial activity of alcoholic & aqueous extract of some indigenous plants. Indo-Global J Pharm Sci 1:186–193

    Article  CAS  Google Scholar 

  • Jones K, Hughes J, Hong M, Jia Q, Orndorff S (2002) Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res 15:335–340. https://doi.org/10.1034/j.1600-0749.2002.02014.x

    Article  CAS  PubMed  Google Scholar 

  • Jordan J (1996) The ecology of the aloes of zimbabwe. Excelsa 17:101–110

    Google Scholar 

  • Joseph B, Justin Raj S (2010) Pharmacognostic and phytochemical properties of Aloe vera linn an overview. Int J Pharm Sci Rev Res 4(2):106–110

    Google Scholar 

  • Kambizi L, Sultana N, Afolayan A (2005) Bioactive compounds isolated from Aloe ferox.: a plant traditionally used for the treatment of sexually transmitted infections in the eastern cape, South Africa. Pharm Biol 42:636–639. https://doi.org/10.1080/13880200490902581

    Article  CAS  Google Scholar 

  • Kanat O, Ozet A, Ataergin S (2006) Aloe vera-induced acute toxic hepatitis in a healthy young man. Eur J Intern Med 17:589

    Article  PubMed  Google Scholar 

  • Karimi J, Mohsenzadeh S (2015) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe Vera. Synth React Inorg Met-Org Nano-Met Chem 45(6):895–898. https://doi.org/10.1080/15533174.2013.862644

    Article  CAS  Google Scholar 

  • Kedarnath NK, Surekha RS, Mahantesh SP, Patil CS (2012) Phytochemical screening and antimicrobial activity of Aloe vera L. World Res J Med Aromat Plant 1(1):11–13

    Google Scholar 

  • Keyhanian S, Stahl-Biskup E (2007) Phenolic constituents in dried flowers of Aloe vera (Aloe barbadensis) and their in vitro Antioxidative capacity. Planta Med 73(06):599–602. https://doi.org/10.1055/s-2007-967202

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Knapp I et al (1979) Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens Mill. Planta 145(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Koroch AR, Juliani HR, Simon JE (2009) Chapter 9: Biology and chemistry of the genus Aloe from Africa In: African natural plant products: new discoveries and challenges in chemistry and quality, ACS Symposium Series, Vol. 1021, pp 171–183 https://doi.org/10.1021/bk-2009-1021.ch009. ISBN13: 9780841269873. eISBN: 9780841225381. Publication Date (Web): December 20, 2009

  • Kresnoadi U, Rahayu RP (2011) Stimulation of osteoblast activity by induction of Aloe vera and xenograft combination. Dent J (Majalah Kedokteran Gigi) 44(4):200. https://doi.org/10.20473/j.djmkg.v44.i4.p200-204

    Article  Google Scholar 

  • Kresnoadi U, Rahayu RP, Rubianto M, Sudarmo SM, Budi HS (2017) TLR2 signaling pathway in alveolar bone osteogenesis induced by Aloe vera and xenograft (XCB). Braz Dent J. https://doi.org/10.1590/0103-6440201600834

  • Kumar R, Sharma B, Tomar NR, Roy P, Gupta AK, Kumar A (2011) In vivo evalution of hypoglycemic activity of Aloe spp. and identification of its mode of action on glut-4 gene expression in vitro. Appl Biochem Biotechnol 164:1246–1256. https://doi.org/10.1007/s12010-011-9210-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar PP, Vijay N, Shameem U, Pratap K, Kalyani RL, Pammi SVN (2015) Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience 5(3):135–139

    Article  Google Scholar 

  • Lee BM, Park K-K (2003) Beneficial and adverse effects of chemopreventive agents. Mutat Res Fundam Mol Mech Mutagen 523:265–278

    Article  CAS  Google Scholar 

  • Lee HZ, Lin CJ, Yang WH, Leung WC, Chang SP (2006) Aloe-emodin induced DNA damage through generation of reactive oxygen species in human lung carcinoma cells. Cancer Lett 239:55–63

    Article  CAS  PubMed  Google Scholar 

  • Lee SU, Shin HK, Min YK, Kim SH (2008) Emodin accelerates osteoblast differentiation through phosphatidylinositol 3-kinase activation and bone morphogenetic protein-2 gene expression. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2008.01.027

  • Lee J, Lee MS, Nam KW (2014) Acute toxic hepatitis caused by an Aloe vera preparation in a young patient: a case report with a literature review. Korean J Gastroenterol 64:54–58

    Article  PubMed  Google Scholar 

  • Li S-W, Yang T-C, Lai C-C, Huang S-H, Liao J-M, Wan L, Lin Y-J, Lin C-W (2014) Antiviral activity of aloe-emodin against influenza a virus via galectin-3 up-regulation. Eur J Pharmacol 738:125–132. https://doi.org/10.1016/j.ejphar.2014.05.028

    Article  CAS  PubMed  Google Scholar 

  • Li P, Kong J, Chen Z, Huang S, Lv G, Wei B, Chu J (2019) Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway. J Nat Med 73(1):104–113. https://doi.org/10.1007/s11418-018-1249-z

    Article  CAS  PubMed  Google Scholar 

  • Lim BO, Seong NS, Choue RW, Kim YD, Lee HY, Jeon TI, Park DK (2003) Efficacy of dietary Aloe vera supplementation on hepatic cholesterol and oxidative status in aged rats. J Nutr Sci Vitamonol 49:292–296

    Article  CAS  Google Scholar 

  • Lindsey KL, Jäger AK, A.M. Viljoen, B.-E. van Wyk (2002) Cyclooxygenase inhibitory activity of Aloe species. S Afr J Bot 68(1):47–50

    Google Scholar 

  • Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocoll 26:311–317. https://doi.org/10.1016/j.foodhyd.2011.06.008

    Article  CAS  Google Scholar 

  • Lodovici M, Guglielmi F et al (2001) Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 39(12):1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Loots DT, Pieters M, Islam MS, Botes L (2011). Antidiabetic effects of Aloe ferox and Aloe greatheadii var. davyana leaf gel extracts in a low-dose streptozotocin diabetes rat model. S Afr J Sci 107(7/8)., Art. #532, 6 pages. https://doi.org/10.4102/sajs.v107i7/8.532

  • López A, de Tangil MS, Vega-Orellana O, Ramírez AS, Rico M (2013) Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. Barbadensis Mill.) from the Canary islands (Spain). Molecules 18:4942–4954. https://doi.org/10.3390/molecules18054942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luiz C, da Rocha Neto AC, Franco PO, Di Piero RM (2017) Emulsions of essential oils and Aloe polysaccharides: antimicrobial activity and resistance inducer potential against Xanthomonas fragariae. Trop Plant Pathol 42:370–381

    Article  Google Scholar 

  • Luyckx VA, Ballantine R, Claeys M, Cuyckens F, Vanden Heuvel H, Cimanga RK, Vlietinck AJ, DeBroe ME, Katz IJ (2002) Herbal remedy-associated acute renal failure secondary to Cape aloes. Am J Kidney Dis 39:E13

    Article  PubMed  Google Scholar 

  • Madhyastha R, Madhyastha H, Pengjam Y, Nurrahmah QI, Nakajima Y, Maruyama M (2019) The pivotal role of microRNA-21 in osteoclastogenesis inhibition by anthracycline glycoside aloin. J Nat Med. https://doi.org/10.1007/s11418-018-1237-3

  • Mahendiran D, Subash G, Arumai Selvan D, Dilaveez R, Senthil Kumar R, Kalilur Rahiman A (2017) Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience 7(3):530–545. https://doi.org/10.1007/s12668-017-0418-y

    Article  Google Scholar 

  • Mandal G, Das A (1980) Structure of the D-galactan isolated from Aloe barbadensis Miller. Carbohydr Res 86(2):247–257

    Article  CAS  Google Scholar 

  • Manitto P, Monti D, Speranza G (1990) Gazz Chim Ital 120:641

    CAS  Google Scholar 

  • Martikainen JA, Ottelin A-M et al (2007) Plant stanol esters are potentially cost-effective in the prevention of coronary heart disease in men: Bayesian modelling approach. Eur J Cardiovasc Prev Rehabil 14(2):265–272

    Article  PubMed  Google Scholar 

  • Masaldan S, Iyer VV (2014) Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions. J Appl Toxicol 34(1):95–104

    Google Scholar 

  • Mbithi CM, Matu EN, Maina NWN (2018) Phytochemical screening, antioxidant activity and hypoglycemic potential of Kenyan Aloe lateritia and Aloe secundiflora extracts in Alloxan-Induced diabetic Swiss Albino Mice. Eur J Med Plant 24:1–18

    Article  Google Scholar 

  • Misawa E, Tanaka M, Nomaguchi K, Nabeshima K, Yamada M, Toida T, Iwatsuki K (2012) Oral ingestion of Aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats. J Agric Food Chem 60:2799–2806. https://doi.org/10.1021/jf204465j. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  • Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519. https://doi.org/10.1016/S0891-5849(01)00610-4

    Article  CAS  PubMed  Google Scholar 

  • Moon E-J, Lee YM et al (1999) A ncovel angiogenic factor derived from Aloe vera gel: β-sitosterol, a plant sterol. Angiogenesis 3(2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Morgan M, Bone K, Mills S et al (2005) Aloe. Safety monograph. In: Mills S, Bone K (eds) The essential guide to herbal safety. Elsevier Churchill Livingstone, St. Louis, pp 233–240

    Google Scholar 

  • Muller SO, Eckert I, Lutz WK, Stopper H (1996) Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase II mediated? Mutat Res 371:165–173

    Article  CAS  PubMed  Google Scholar 

  • Nash RJ, Beaumont J, Veitch NC, Reynolds T, Benner J, Hughes CNG, Dring JV, Bennett RN, Dellar JE (1992) Planta Med 58:84

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Sethi N, Singh RK, Jain AK (1992) Commonly used Indian abortifacient plants with special reference to their terratologic effects in rats. J Ethnopharmacol 36:147–154

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program (2001) NTP toxicology and carcinogenesis studies of emodiN (CAS NO. 518-82-1) feed studies in F344/N rats and B6C3F1 mice. Natl Toxicol Program Tech Rep Ser 493:1–278

    Google Scholar 

  • National Toxicology Program (2015) Toxicology and carcinogenesis studies of a nondecolorized whole leaf extract of Aloe vera in F344/N rats and B6C3F1 mice. http://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr577_508.pdf. Accessed Oct 2015

  • Navarro D, Díaz-Mula HM, Guillén F, Zapata PJ, Castillo S, Serrano M, Valero D, Martínez-Romero D (2011) Reduction of nectarine decay caused by rhizopus stolonifer, botrytis cinerea and penicillium digitatum with Aloe vera gel alone or with the addition of thymol. Int J Food Microbiol 151:241–246. https://doi.org/10.1016/j.ijfoodmicro.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  • Ndhlala A, Amoo S, Stafford G, Finnie J, Van Staden J (2009) Antimicrobial, anti-inflammatory and mutagenic investigation of the south african tree aloe (Aloe barberae). J Ethnopharmacol 124:404–408. https://doi.org/10.1016/j.jep.2009.05.037

    Article  CAS  PubMed  Google Scholar 

  • Negahdari S, Galehdari H, Kesmati M, Rezaie A, Shariati G (2017) Wound healing activity of extracts and formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on mouse dermal fibroblast cells. Int J Prev Med 8:18–18. https://doi.org/10.4103/ijpvm.IJPVM_338_16

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejatzadeh-Barandozi F (2013) Antibacterial activities and antioxidant capacity of Aloe vera. Org Med Chem Lett 3:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nejatzadeh-Barandozi F, Enferadi ST (2012) FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment. Org Med Chem Lett 2(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nesslany F, Simar-Meintieres S, Ficheux H, Marzin D (2009) Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutat Res 678:13–19

    Article  CAS  PubMed  Google Scholar 

  • Ngo MQ, Nguyen NN, Shah SA (2010) Oral aloe vera for treatment of diabetes mellitus and dyslipidemia. Am J Health Syst Pharm 67(21):1804–1811, 1806, 1808 passim. https://doi.org/10.2146/ajhp100182 PMID:20966143

  • Ni Y, Tizard IR (2004) Analytical methodology: the gel-analysis of aloe pulp and its derivatives. In: Reynolds T (ed) Aloes the genus Aloe. CRC Press, Boca Raton, pp 111–126

    Google Scholar 

  • Ni Y, Turner D et al (2004) Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int Immunopharmacol 4(14):1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Niciforovic A, Adzic M, Zabric B, Radojcic MB (2007) Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells. Biophys Chem 81:1463–1466

    CAS  Google Scholar 

  • Noor A, Gunasekaran S, Manickam AS, Vijayalakshmi MA (2008) Antidiabetic activity of Aloe vera and histology of organs in streptozotocin-induced diabetic rats. Curr Sci 94:1070–1076

    Google Scholar 

  • Noor A, Gunasekaran S, Vijayalakshmi MA (2017) Improvement of insulin secretion and pancreatic β-cell function in Streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharm Res 9(Suppl 1):S99–S104. https://doi.org/10.4103/pr.pr_75_17

    Article  CAS  Google Scholar 

  • Okamura N, Hine N, Harada S, Fujioka T, Mihashi K, Yagi A (1996) Three chromone components from Aloe vera leaves. Phytochemistry 43:495–498

    Google Scholar 

  • Okamura N, Hine N, Tateyama Y, Nakazawa M, Fujioka T, Mihashi K, Yagi A (1997) Three chromone of Aloe vera leaves. Phytochemistry 45:1511–1513

    Google Scholar 

  • Okamura N, Hine N, Tateyama Y, Nakazawa M, Fujioka T, Mihashi K, Yagi A (1998) Five chromone from Aloe vera leaves. Phytochemistry 48:219–223

    Google Scholar 

  • Okyar A, Can A, Akev N, Baktir G, Sütlüpinar N (2001) Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytother Res 15(2):157–161. https://doi.org/10.1002/ptr.719

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Toro R, Collazo-Bigliardi S, Roselló J, Santamarina P, Chiralt A (2017) Antifungal starch-based edible films containing Aloe vera. Food Hydrocoll 72:1–10. https://doi.org/10.1016/j.foodhyd.2017.05.023

    Article  CAS  Google Scholar 

  • Ovodova R, Lapchik V et al (1975) Polysaccharides of Aloe arborescens. Chem Nat Compd 11(1):1–2

    Article  Google Scholar 

  • Park MK, Park JH, Shin YG, Choi YS, Kim KH, Cho TH, Lee SK (1997) Chemical Constituent of Aloe capensis. Arch Pharm Res 20:194

    Google Scholar 

  • Park JH, Kim NY, Shin YG, Choi YS, Lee JG, Kim KH, Lee SK (1998) Analysis of 13 phenolic compounds in Aloe species by high performance liquid chromatography. Phytochem Anal 9(4):186–191

    Article  CAS  Google Scholar 

  • Park M-Y, Kwon H-J, Sung M-K (2009) Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci Biotechnol Biochem 73:828–832. https://doi.org/10.1271/bbb.80714

    Article  CAS  PubMed  Google Scholar 

  • Patel DK, Patel K, Tahilyani V (2012a) Barbaloin: a concise report of its pharmacological and analytical aspects. Asian Pac J Trop Biomed 2(10):835–838. https://doi.org/10.1016/S2221-1691(12)60239-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel DK, Prasad SK, Kumar R, Hemalatha S (2012b) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2(4):320–330. https://doi.org/10.1016/S2221-1691(12)60032-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecere T, Gazzola MV, Mucignat C, Parolin C, Dalla VF, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M (2000) Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60:2800–2804

    CAS  PubMed  Google Scholar 

  • Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M (2016a) Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: involvement of MAPK mediated Wnt and Bmp signaling. Biomol Ther. https://doi.org/10.4062/biomolther.2015.106

  • Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M (2016b). NF-κB pathway inhibition by anthrocyclic glycoside aloin is key event in preventing osteoclastogenesis in RAW264.7 cells. Phytomedicine. https://doi.org/10.1016/j.phymed.2016.01.006

  • Proposition 65. Chemicals Listed Effective December 4, 2015, as Known to the State of California to Cause Cancer: Aloe Vera, Non-Decolorized Whole Leaf Extract, and Goldenseal Root Powder. U.S. Office of Environmental Health Hazard Assessment. 4 December 2015

    Google Scholar 

  • Rabe C, Musch A, Schirmacher P, Kruis W, Hoffmann R (2005) Acute hepatitis induced by an Aloe vera preparation: a case report. World J Gastroenterol 11:303–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Radha MH, Laxmipriya NP (2015) Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J Tradit Complement Med 5:21–26. https://doi.org/10.1016/j.jtcme.2014.10.006

    Article  PubMed  Google Scholar 

  • Rahmani AH, Aldebasi YH, Srikar S, Khan AA, Aly SM (2015) Aloe vera: potential candidate in health management via modulation of biological activities. Pharmacogn Rev 9:120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainsford KD, Powanda MC, Whitehouse MW (2015) Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-intestinal Diseases. Springer, Basel, p 211

    Book  Google Scholar 

  • Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S (2006) Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin Exp Pharmacol Physiol 33:232–237

    Article  CAS  PubMed  Google Scholar 

  • Rajashree S, Rose C (2018) Studies on an anti-aging formulation prepared using aloe vera blended collagen and chitosan. IJPSR 9(2):582–588

    CAS  Google Scholar 

  • Raphael E (2012) Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. Glob Adv Res J Environ Sci Toxicol 1(2):014–017

    Google Scholar 

  • Rauwald HW (1990) 16thAnnual Symposium on Pharmacognosy and Natural Products Chemistry, on 27, Oct, 1989 in Utrecht/Netherlands, Pharm Ztg Wiss 3:169

    Google Scholar 

  • Rauwald HW, Beil A (1993) 5-Hydroxyaloin A in the genus Aloe Thin Layer Chromatographic screening and High Performance Liquid Chromatographic determination. Z Naturforsch C 48:1–4; received December 12, 1992

    Article  CAS  Google Scholar 

  • Reynolds T (2004) Aloe chemistry. In: Reynolds T (ed) Aloes the genus Aloe. CRC Press, Boca Raton, pp 39–74

    Chapter  Google Scholar 

  • Reynolds T (2005) Hemlock alkaloids from Socrates to poison aloes. Phytochemistry 66(12):1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N et al (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Roberts DB, Travis EL (1995) Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice. Int J Radiat Oncol Biol Phys 32:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Sacan O, Akev N, Yanardag R (2017) In vitro inhibitory effect of Aloe vera (L.) Burm. f. leaf extracts on the activity of some enzymes and antioxidant activity. Ind J Biochem Biophys 54(1–2):82–89

    CAS  Google Scholar 

  • Sahu PK, Giri DD et al (2013) Therapeutic and medicinal uses of Aloe vera: a review. Pharmacol Pharm 4(08):599

    Article  CAS  Google Scholar 

  • Saini DK, Saini MR (2011) Evaluation of radioprotective efficacy and possible mechanism of action of aloe gel. Environ Toxicol Pharmacol 31:427–435. https://doi.org/10.1016/j.etap.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  • Salawu KM, Ajaiyeoba EO, Ogbole OO, Adeniji JA, Faleye TC, Agunu A (2017) Antioxidant, brine shrimp lethality, and antiproliferative properties of gel and leaf extracts of Aloe schweinfurthii and Aloe vera. J Herbs Spices Med Plants 23(4):263–271

    Article  CAS  Google Scholar 

  • Saleem R, Faizi S, Deeba F, Siddiqui BS, Qazi MH (1997) Anthrones from Aloe barbadensis. Phytochemistry 45:1279

    Google Scholar 

  • Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Fokou PVT, Yousef Z, Zakaria ZA, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J (2018) Aloe genus plants: from farm to food applications and Phytopharmacotherapy. Int J Mol Sci 19(9):2843

    Article  PubMed Central  CAS  Google Scholar 

  • Sampedro MC, Artola RL, Murature M, Murature D, Ditamo Y, Roth GA, Kivatinitz S (2004) Mannan from Aloe saponaria inhibits tumoral cell activation and proliferation. Int Immunopharmacol 4:411–418

    Article  CAS  PubMed  Google Scholar 

  • Seifter S, England S (1982) The liver biology and pathobiology. In: Arias I, Popper H, Schacter D (eds) Energy metabolism. Raven Press, New York, pp 219–249

    Google Scholar 

  • Shah AH, Qureshi S, Tariq M, Ageel AM (1989) Toxicity studies on six plants used in the traditional Arab system of medicine. Phytotherapy Res 3:25–29

    Article  Google Scholar 

  • Shalabi M, Khilo K, Zakaria MM, Elsebaei MG, Abdo W, Awadin W (2015) Anticancer activity of Aloe vera and Calligonum comosum extracts separetely on hepatocellular carcinoma cells. Asian Pac J Trop Biomed 2015 5(5):375–381

    Article  CAS  Google Scholar 

  • Sigler A, Rauwald HW (1994) Aloe plants accumulate Anthrone-Type Anthranoids in inflorescence and leaves, and Tetrahydroanthracenes in roots. Z. Naturforsch 49c:286–292. Received February 4/March 21, 1994

    Article  Google Scholar 

  • Singh S, Sharma PK, Kumar N, Dudhe R (2010) Biological activities of Aloe vera. Int J Pharm Technol 2(3):259–280

    CAS  Google Scholar 

  • Sonam SK, Tiwari A (2015) Antibacterial efficacy of aloe species on pathogenic bacteria. Int J Sci Technol Manag 4(1):143–151

    Google Scholar 

  • Speranza G, Dada G, Lunazzi L, Gramatica P, Manitto P (1986) Aloenin B, a New Diglucosylated 6-Phenyl-2-pyrone from Kenya Aloe. J Nat Prod 49:800

    Google Scholar 

  • Speranza G, Martignon A, Manitto P (1988) Iso-aloeresin A, a minor constituent of Cape aloe. J Nat Prod 51:588

    Google Scholar 

  • Speranza G, Manitto P, Monti D, Lianza F (1990) Feroxidin, a novel 1-methyltetralin derivative isolated from cape aloe. Tetrahedron Lett 31(21):3077–3080

    Article  CAS  Google Scholar 

  • Speranza G, Manitto P et al (1993) Feralolide, a dihydroisocoumarin from Cape aloe. Phytochemistry 33(1):175–178

    Google Scholar 

  • Speranza G, Zanzola S, Meo AD (1997) J Nat Prod 60:692

    Article  CAS  Google Scholar 

  • Srikanth K, Jang SI et al (2014) cpDNA 와 ITS 염기변이에 근거한 신품종 생장알로에 유전적 상관관계. Korean J Pl Taxon 44(4):250–256

    Article  Google Scholar 

  • Steinmeyer J (2000) Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res Ther 2:379. https://doi.org/10.1186/ar116

    Article  CAS  Google Scholar 

  • Subramanian S, Sathish Kumar D, Arulselvan P, Senthilkumar GP, Mahadeva Rao US (2007) Evaluation of anti-ulcerogenic potential of Aloe vera leaf gel extract studied in experimental rats. J Pharmacol Toxicol 2(1):85–97

    Article  Google Scholar 

  • Sun YN, Li W, Lee SH, Jang HD, Ma JY, Kim YH (2017) Antioxidant and anti-osteoporotic effects of anthraquinones and related constituents from the aqueous dissolved Aloe exudates. Nat Prod Res 31(23):2810–2813. https://doi.org/10.1080/14786419.2017.1295238

    Article  CAS  PubMed  Google Scholar 

  • Surjushe A, Vasani R, Saple DG (2008) Aloe vera: a short review. Indian J Dermatol 53(4):163–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Suvitayavat W, Sumrongkit C, Thirawarapan S, Bunyapraphatsara N (2004) Effects of aloe preparation on the histamine-induced gastric secretion in rats. J Ethnopharmacol 90:239–247. https://doi.org/10.1016/j.jep.2003.09.044

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Misawa E, Yamauchi K, Abe F, Ishizaki C (2015) Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women. Clin Cosmet Investig Dermatol 8:95–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Yamamoto Y, Misawa E, Nabeshima K, Saito M, Yamauchi K, Abe F, Furukawa F (2016) Effects of Aloe sterol supplementation on skin elasticity, hydration, and collagen score: A 12-week double-blind, randomized, controlled trial. Skin Pharmacol Physiol 29:309–317

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Hua Y (2005) Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chem 91(3):413–418

    Article  CAS  Google Scholar 

  • Ulbricht C, Armstrong J, Basch E, Basch S, Bent S, Dacey C et al (2007) An evidence-based systematic review of Aloe vera by the natural standard research collaboration. J Herb Pharmacother 7(3–4):279–323. https://doi.org/10.1080/15228940802153339. PMID:18928148

    Article  PubMed  Google Scholar 

  • Ulbricht C, Armstrong J, Basch E et al (2008) An evidence-based systematic review of Aloe vera by the natural standard research collaboration. J Herb Pharmacother 7:279–323

    Article  Google Scholar 

  • Van Gorkom BA, de Vries EG, Karrenbeld A, Kleibeuker JH (1999) Review article: anthranoid laxatives and their potential carcinogenic effects. Aliment Pharmacol Ther 13:443–452

    Article  PubMed  Google Scholar 

  • Van Heerden FR, Van Wyk BE, Viljoen AM (1996) Aloeresins E and F, two chromone derivatives from Aloe peglerae. Phytochemistry 43:867

    Google Scholar 

  • van Heerden FR, Viljoen AM, van Wyk B-E (2000) 6′ -O-Coumaroylaloesin from Aloe castanea- a taxonomic marker for Aloe section Anguialoe. Phytochemistry 55:117–120

    Article  PubMed  Google Scholar 

  • Van Wyk B-E, Van Oudtshoorn MVR et al (1995) Geographical variation in the major compounds of Aloe ferox leaf exudate. Planta Med 61(03):250–253

    Article  PubMed  Google Scholar 

  • Vazquez B, Avila G, Segura D, Escalante B (1996) Antiinflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol 55(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Veitch NC, Simmonds MS et al (1994) A dihydroisocoumarin glucoside from Aloe hildebrandtii. Phytochemistry 35(5):1163–1166

    Article  CAS  Google Scholar 

  • Wessels PL, Holzapfel CW, Van Wyk B-E, Marais W (1996) ChemInform abstract: Plicataloside, an O,O-Diglycosylated Naphthalene derivative from Aloe plicatilis. Phytochemistry 41(6):1547–1551

    Article  CAS  Google Scholar 

  • West DP, Zhu YF (2003) Evaluation of aloe vera gel gloves in the treatment of dry skin associated with occupational exposure. Am J Infect Control 31:40–42

    Article  PubMed  Google Scholar 

  • WHO (1999) Aloe and Aloe vera gel. WHO Monographs on selected medicinal plants. Vol. 1. World Health Organization, Geneva, Switzerland, pp 33–49, available from http://apps.who.int/medicinedocs/en/d/Js2200e/5.html

  • Wintola OA, Afolayan AJ (2011) Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacogn Mag 7(28):325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfle D, Schmutte C, Westendorf J, Marquardt H (1990) Hydroxyanthraquinones as tumor promoters: Enhancement of malignant transformation of C3H mouse fibroblasts and growth stimulation of primary rat hepatocytes. Cancer Res 50:6540–6544

    CAS  PubMed  Google Scholar 

  • Woo WS, Shin KH, Chung HS, Shim CS (1994) Aloenin acetal. Kor J Pharmcogn 25:307

    Google Scholar 

  • Yagi A, Hine N, Asai M, Nakazawa M, Tateyama Y, Okamura N, Fujioka T, Mihashi K, Shimomura K (1998) Tetrahydroanthracene glucosides in callus tissue from Aloe barbadensis leaves. Phytochemistry 47:1267

    Google Scholar 

  • Yagi A, Takeo S, Zasshi Y (2003) Anti-inflammatory constituents, aloesin and aloemannan in Aloe species and effects of tanshinon VI in Salvia miltiorrhiza on heart. J Pharm Soc Jpn 123:517–532

    Article  CAS  Google Scholar 

  • Yang HN, Kim DJ, Kim YM, Kim BH, Sohn KM, Choi MJ, Choi YH (2010) Aloe-induced toxic hepatitis. J Korean Med Sci 25:492–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang M, Ai F, Huang C (2017) Cardioprotective effect of Aloe vera biomacromolecules conjugated with selenium trace element on myocardial ischemia-reperfusion injury in rats. Biol Trace Elem Res 177(2):345–352

    Article  CAS  PubMed  Google Scholar 

  • Yen G-C, Duh P-D et al (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70(4):437–441

    Article  CAS  Google Scholar 

  • Yenesew A, Ogur JA, Duddeck H (1993) (R)-Prechrysophanol from Aloe graminicola. Phytochemistry 34:1442

    Google Scholar 

  • Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O (1996) Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine 3(3):241–243. https://doi.org/10.1016/S0944-7113(96)80060-2

    Article  CAS  PubMed  Google Scholar 

  • Yoo EA, Kim SD, Lee WM, Park HJ, Kim SK, Cho JY, Min W, Rhee MH (2008) Evaluation of antioxidant, antinociceptive, and anti-inflammatory activities of ethanol extracts from aloe saponaria haw. Phytother Res 22:1389–1395. https://doi.org/10.1002/ptr.2514

    Article  PubMed  Google Scholar 

  • Yoshimoto R, Kondoh N, Isawa M, Hamuro J (1987) Plant lectin, ATF1011, on the tumor cell surface augments tumor-specific immunity through activation of T cells specific for the lectin. Cancer Immunol Immunother 25:25–30

    Article  CAS  PubMed  Google Scholar 

  • Yusuf S, Agunu A, Diana M (2004) The effect of Aloe vera A. Berger (Liliaceae) on gastric acid secretion and acute gastric mucosal injury in rats. J. Ethnopharmacol 93:33–37

    Article  Google Scholar 

  • Zandi K, Zadeh MA, Sartavi K, Rastian Z (2007) Antiviral activity of Aloe vera against herpes simplex virus type 2: an in vitro study. Afr J Biotechnol 6:1770–1773

    Article  Google Scholar 

  • Zapata P, Navarro D, Guillén F, Castillo S, Martínez-Romero D, Valero D, Serrano M (2013) Characterisation of gels from different aloe spp. as antifungal treatment: potential crops for industrial applications. Ind. Crops Prod 42:223–230. https://doi.org/10.1016/j.indcrop.2012.06.002

    Article  CAS  Google Scholar 

  • Zhao L, Wang Y, Wang Z, Xu Z, Zhang Q, Yin M (2015) Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2015.05.009

  • Zhou Y, Feng Y, Wang H, Yang H (2003) 90-day subchronic toxicity study of aloe whole-leaf powder. Wei Sheng Yan Jiu 32(6):590–593

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuebuka Egbuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egbuna, C. et al. (2020). Aloe Species as Valuable Sources of Functional Bioactives. In: Egbuna, C., Dable Tupas, G. (eds) Functional Foods and Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-42319-3_18

Download citation

Publish with us

Policies and ethics