Skip to main content

Spring, Summer and Melting Sea Ice

  • Chapter
  • First Online:
Arctic Sea Ice Ecology

Abstract

This chapter describes one of the most dynamic and ecological important seasons. The onset of ice melt initiates significant changes in the physical properties of the ice (4.1), and the related biotic processes in the spring/summer sea ice are addressed (4.2). Ice algal spring blooms are described and exemplified with two studies from contrasting Arctic sites (4.3). A Case Study 2 has a focus on effects and consequences for ice algae of increased irradiances at the ice bottom in terms of pigments, fatty acids, and MAAs (4.4). Ice algae bloom dynamics are investigated in a combined model and field study (4.5). Melt ponds termed “windows to the ocean” develop on the surface of the ice with increased light transmittance (4.6). Seeding of the ice or water column below with viable ice algae can initiate ice algae or pelagic blooms, and mechanisms are explored in model and field studies (4.7). Case study 3 show that species of meiofauna graze directly on the ice algae, and that the meiofauna establishes an important ecological component in the sea ice (4.8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrigo, K. R., Perovich, D., Pickart, R. R., Brown, Z. W., Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R., Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J., Matsouka, A., Mitchell, B. G., Moore, G. W. K., Reynolds, R. A., Sosik, H. M., & Swift, J. H. (2014). Phytoplankton blooms beneath at the sea ice in the Chukchi Sea. Deep-Sea Research II, 105, 1–16. https://doi.org/10.1016/j.dsr2.2014.03.018.

    Article  Google Scholar 

  • Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., Olsen, L. M., Kauko, H. M., Bailey, A., Chierici, M., Cohen, L., Doulgeris, A. P., Ehn, J. K., Fransson, A., Gerland, S., Hop, H., Hudsonm, S. R., Hughes, N., Itkin, P., Johnsen, G. M., King, J. A., Koch, B. P., Koening, Z., Kwasniewski, S., Laney, S. R., Nicolaus, M., Pavlov, A. K., Polashenski, C. M., Provost, C., Rösel, A., Sandbu, M., Spreen, G., Smedsrud, L. H., Sundfjord, A., Taskjelle, T., Tatarek, A., Wiktor, J., & Wagner, P. M. (2017). Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Scientific Reports, 7. https://doi.org/10.1038/srep40850.

  • Bluhm, B. A., Swadling, K. M., & Gradinger, R. (2017). Sea ice as a habitat for macrograzers. In D. N. Thomas (Ed.), Sea Ice (3rd ed., pp. 394–414). Chichester: Wiley Blackwell, 652 pp.

    Google Scholar 

  • Boetius, A., Albrecht, S., Bakker, K., Beinhold, C., Felden, J., Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., & Wenzhöfer, F. (2013). Export of algal biomass from the melting Arctic sea ice. Science, 339. https://doi.org/10.1126/science.1231346.

  • Campbell, K., Mundy, C. J., Barner, D. G., & Gosselin, M. (2014). Characterizing the sea ice algae chlorophyll a-snow depth relationship over Arctic spring melt using transmitted irradiance. Journal of Marine Systems, 147, 76–84. https://doi.org/10.1016/j.jmarsys.2014.01.008.

    Article  Google Scholar 

  • Comiso, J. C. (2012). Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25, 1176–1193. https://doi.org/10.1175/JCLI-D-11-00113.1.

    Article  Google Scholar 

  • Cota, G. F., & Horne, E. P. W. (1989). Physical control of Arctic ice algal production. Marine Ecology Progress Series, 52, 111–121. https://doi.org/10.3354/meps052111.

    Article  Google Scholar 

  • Cox, G. F. N., & Weeks, W. F. (1974). Salinity variations in sea ice. Journal of Glaciology, 13, 109–120. https://doi.org/10.3189/S0022143000023418.

    Article  Google Scholar 

  • Deming, J. W., & Collins, R. E. (2017). Sea ice as a habitat for Bacteria, Archaea and viruses. In D. N. Thomas (Ed.), Sea Ice (3rd ed., pp. 326–351). Chichester: Wiley Blackwell, 652 pp.

    Google Scholar 

  • Ehn, J. K., Mundy, C. J., Barber, D. G., Hop, H., Rossnagel, A., & Stewart, J. (2011). Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. Journal of Geophysical Research, 116. https://doi.org/10.1029/2010JC006908.

  • Falkowski, P. G., & Raven, J. A. (2007). Aquatic photosynthesis (2nd ed.). Princeton: Princeton University Press, 488 pp.

    Google Scholar 

  • Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., & Boetius, A. (2015). Photosynthetic production in the Central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences, 12, 3525–3549. https://doi.org/10.5194/bg-12-3525-2015.

    Article  Google Scholar 

  • Fetterer, F., & Untersteiner, N. (1998). Observations of melt ponds on Arctic Sea ice. Journal of Geophysical Research, 103, 24.821–24.835. https://doi.org/10.1029/98JC02034.

    Article  Google Scholar 

  • Friedrich, C. (1997). Ecological investigations on the fauna of the Arctic Sea-ice. Reports on Polar and Marine Research, 246, 1–211.

    Google Scholar 

  • Garrison, D. L., & Buck, K. R. (1986). Organism losses during ice melting: A serious bias in sea ice community studies. Polar Biology, 6, 237–239. https://doi.org/10.1007/BF00443401.

    Article  Google Scholar 

  • Gleitz, M., Rutgers, V. D., Thomas, D. N., Dieckmann, G. S., & Millero, F. J. (1995). Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic Sea ice brine. Marine Chemistry, 51, 81–91. https://doi.org/10.1016/0304-4203(95)00053-T.

    Article  Google Scholar 

  • Glud, R. N., Rysgaard, S., Kühl, M., & Hansen, J. W. (2007). The sea ice in Young Sound: Implications for carbon cycling. In S. Rysgaard & R. N. Glud (Eds.), Carbon cycling in Arctic marine Ecosystems – Case study Young Sound (Meddelelser om Grønland, Bioscience, Vol. 58) (pp. 62–85). Copenhagen: Copenhagen the Commission for Scientific Research in Greenland.

    Google Scholar 

  • Glud, R. N., Rysgaard, S., Turner, G., McGinnis, D. F., & Leakey, R. J. G. (2014). Biological and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnology Oceanography, 59, 1097–1111. https://doi.org/10.4319/lo.2014.59.4.1097.

    Article  Google Scholar 

  • Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., & Zhu, J. (2007). Thermal evolution of permeability and microstructure in sea ice. Geophysical Research Letters, 34. https://doi.org/10.1029/2007GL030447.

  • Goss, R., & Jacob, T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research, 106, 103–122. https://doi.org/10.1007/s11120-010-9536-x.

    Article  Google Scholar 

  • Gosselin, M., Legendre, L., Therriault, J.-C., Demers, S., & Rochet, M. (1986). Physical control of the horizontal patchiness of sea-ice microalgae. Marine Ecology Progress Series, 29, 289–298. https://doi.org/10.3354/meps029289.

  • Gradinger, R., & Ikävalko, J. (1998). Organism incorporation into newly forming Arctic Sea ice in the Greenland Sea. Journal of Plankton Research, 20, 871–886. https://doi.org/10.1093/plankt/20.5.871.

    Article  Google Scholar 

  • Gradinger, R. (1999). Integrated abundances and biomass of sympagic meiofauna from Arctic and Antarctic pack ice. Polar Biology, 22, 169–177.

    Article  Google Scholar 

  • Gradinger, R. (2009). Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Research Part II Topical Studies in Oceanography, 56, 1201–1212. https://doi.org/10.1016/j.dsr2.2008.10.016.

    Article  Google Scholar 

  • Gradinger, R., and Bluhm, B. (2009). Assessment of the abundance and diversity of sea ice biota. In Sea ice field research techniques, pp. 283-300. Ed. by Eicken H, R. Gradinger, M. Salganek, K. Shirasawa, D. K. Perovich, and Leppäranta, M. University of Alaska Press, Fairbanks.

    Google Scholar 

  • Gradinger, R., & Bluhm, B. (2010). Timing of ice algal grazing by the arctic nearshore benthic amphipod Onisimus litoralis. Arctic, 63, 355–358. https://doi.org/10.14430/arctic1498.

    Article  Google Scholar 

  • Gradinger, R. R., Kaufman, M. R., & Bluhm, B. A. (2009). Pivotal role of sea ice sediments in the seasonal development of near-shore Arctic fast ice biota. Marine Ecology Progress Series, 394, 49–63. https://doi.org/10.3354/meps08320.

  • Grainger, E. H., & Hsiao, S. I. C. (1990). Trophic relationships of the sea ice meiofauna in Frobisher Bay, Arctic Canada. Polar Biology, 10, 283–292.

    Article  Google Scholar 

  • Ha, S.-Y., Min, J.-O., Joo, H., Kim, M.-S., Kang, S.-H., & Shin, K.-H. (2018). Synthesis of mycosporine-like amino acids by a size-fractionated marine phytoplankton community of the arctic Beaufort Sea. Journal of Photochemistry and Photobiology B: Biology, 188, 87–94. https://doi.org/10.1016/j.jphotobiol.2018.09.008.

    Article  Google Scholar 

  • Hancke, K., Lund-Hansen, L. C., Lamare, M. L., Pedersen, S. H., King, M. D., Andersen, P., & Sorrell, B. K. (2018). Extreme low light requirement for algae growth underneath sea ice: A case study from station Nord, NE Greenland. Journal of Geophysical Research, 123, 985–1000. https://doi.org/10.1002/2017JC013263.

    Article  Google Scholar 

  • Hansen, P. J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquatic Microbial Ecology, 28, 279–288. https://doi.org/10.3354/ame028279.

    Article  Google Scholar 

  • Hare, K. R., Wang, F., Barber, D., Geilfus, N.-X., Galley, R. J., & Rysgaard, S. (2013). pH evolution in sea ice grown at an outdoor experimental facility. Marine Chemistry, 154, 46–54. https://doi.org/10.1016/j.marchem.2013.04.007.

  • Hinga, K. R. (2002). Effect of pH on coastal marine phytoplankton. Marine Ecology Progress Series, 238, 281–300. https://doi.org/10.3354/meps238281.

    Article  Google Scholar 

  • Horner, R. A., & Schrader, G. C. (1982). Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic, 35, 485–503.

    Article  Google Scholar 

  • Huertas, I. E., Colman, B., Espie, G. S., & Lubian, L. M. (2000). Active transport of CO2 by the three species of marine microalgae. Journal of Phycology, 36, 314–320. https://doi.org/10.1046/j.1529-8817.2000.99142.x.

    Article  Google Scholar 

  • Juhl, A. R., Krembs, C., & Meiners, K. M. (2011). Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic Sea ice. Marine Ecology Progress Series, 436, 1–16. https://doi.org/10.3354/meps09277.

    Article  Google Scholar 

  • Kauko, H. M., Olsen, L. M., Duarte, P., Peeken, I., Granskog, M. A., Johnsen, G., Fernández-Méndez, M., Pavlov, A. K., Mundy, C. J., & Assmy, P. (2018). Algal colonization of young Arctic Sea ice in spring. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00199.

  • Korb, R. E., Saville, P. J., Johnston, A. M., & Raven, J. A. (1997). Sources of inorganic carbon for photosynthesis by three species of marine diatoms. Journal of Phycology, 33, 433–440. https://doi.org/10.1111/j.0022-3646.1997.00433.x.

    Article  Google Scholar 

  • Kühl, M., Glud, R. N., Borum, J., Roberts, R., & Rygaard, S. (2001). Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Marine Ecology Progress Series, 223, 1–114. https://doi.org/10.3354/meps223001.

    Article  Google Scholar 

  • Lalande, C., Bélanger, S., & Fortier, L. (2009). Impact of a decreasing sea ice cover on the vertical export of particulate organic carbon in the northern Laptev Sea, Siberian Arctic Ocean. Geophysical Research Letters, 36, L21604. https://doi.org/10.1029/2009GL040570.

    Article  Google Scholar 

  • Lange, B. A., Michel, C., Beckers, J. F., Casey, J. A., Flores, H., Hatam, I., & Haas, C. (2015). Comparing spring time ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea. PlosOne, 10, 34–41. https://doi.org/10.1371/journal.pone.0122418.

    Article  Google Scholar 

  • Lavoie, D., Denman, K., & Michel, C. (2005). Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). Journal of Geophysical Research, 110, C11009. https://doi.org/10.1029/2005JC002922.

    Article  Google Scholar 

  • Lee, S. H., Stockwell, D. A., Joo, H.-M., Son, Y. B., Kang, C.-K., & Whitledge, T. E. (2012). Phytoplankton production from melting ponds on Arctic Sea ice. Journal of Geophysical Research, 117, C04030. https://doi.org/10.1029/2011JC007717.

    Article  Google Scholar 

  • Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin, M., Juul-Pedersen, T., & Gradinger, R. (2015). Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139, 151–170. https://doi.org/10.1016/j.pocean.2015.07.012.

    Article  Google Scholar 

  • Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K., Meiners, K. M., Rintala, J.-M., Thomas, D. N., & Stefels, J. (2018). Microalgal community structure and primary production in Arctic and Antarctic Sea ice: A synthesis. Elementa: Science of the. Anthropocene, 6, 1–25. https://doi.org/10.1525/elementa.267.

    Article  Google Scholar 

  • Lin, L., He, J., Zhang, F., Cao, S., & Zhang, C. (2016). Algal bloom in a melt pond on Canada Basin pack ice. Polar Record, 52, 114–117. https://doi.org/10.1017/S0032247415000510.

    Article  Google Scholar 

  • Lund-Hansen, L.C., Hawes, I., Sorrell, B.K and Nielsen, M.H. (2013). Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biology, https://doi.org/10.1007/s00300-013-1444-z

  • Lund-Hansen, L. C., Hawes, I., Nielsen, M. H., Dahllöf, I., & Sorrell, B. K. (2018). Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, West Greenland. Arctic, Antarctic and Alpine Research, 50. https://doi.org/10.1080/15230430.2017.1414468.

  • Lund-Hansen, L. C., Hancke, K., Salmansen, N., Balslev, L., Nielsen, J., Hawes, I. and Sorell, B. K. (2020). Effects of snow removal and increased irradiance on biomass, pigments, photobiology and nutritional quality of Arctic sea ice algae during spring growth. Marine Ecology Progress Series (In press).

    Google Scholar 

  • Lüthje, M., Feltham, D. L., Taylor, P. D., & Worster, M. G. (2006). Modeling the summertime evolution of sea-ice melt ponds. Journal of Geophysical Research, 111. https://doi.org/10.1029/2004JC002818.

  • Maslanik, J., Stroeve, J., Fowler, C., & Emery, W. (2011). Distribution and trends in Arctic Sea ice age through spring 2011. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL047735.

  • Marcoval, M. A., Villafane, V. E., & Helbling, E. W. (2007). Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. Journal of Photochemistry and Photobiology B: Biology, 89, 78–87. https://doi.org/10.1016/j.jphotobiol.2007.09.004.

    Article  Google Scholar 

  • Marquard, M., Majaneva, S., Pitusi, V., & Søreide, J. E. (2018). Pan-Arctic distribution of the hydrozoan Sympagohydra tuuli? First record in sea ice from Svalbard (European Arctic). Polar Biology, 41, 583–588.

    Article  Google Scholar 

  • McConnell, B., Gradinger, R., Iken, K., & Bluhm, B. (2012). Growth rates of arctic juvenile Scolelepis squamata (Polychaeta: Spionidae) isolated from Chukchi Sea fast ice. Polar Biology, 35, 1487–1494.

    Article  Google Scholar 

  • Meiners, K. M., & Michel, C. (2017). Dynamics of nutrients, dissolved organic matter and exopolymers in sea ice. In D. N. Thomas (Ed.), Sea Ice (3rd ed., pp. 415–432). Chichester, 652 pp: Wiley Blackwell. https://doi.org/10.1002/9781118778371.ch17.

    Chapter  Google Scholar 

  • Michel, C., Nielsen, T. G., Nozais, C., & Gosselin, M. (2002). Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquatic Microbial Ecology, 30, 57–68.

    Article  Google Scholar 

  • Mikkelsen, D. M., Rysgaard, S., & Glud, R. N. (2008). Microalgal composition and primary production in Arctic Sea ice: A seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland. Marine Ecology Progress Series, 368, 65–74. https://doi.org/10.3354/meps07627.

    Article  Google Scholar 

  • Mikkelsen, D. M., & Witkowski, A. (2010). Melting Sea ice for taxonomic analysis: A comparison of four melting procedures. Polar Research, 29, 451–454. https://doi.org/10.1111/j.1751-8369.2010.00162.x.

    Article  Google Scholar 

  • Mock, T., & Gradinger, R. (1999). Determination of Arctic algal production with a new in situ incubation technique. Marine Ecology Progress Series, 177, 15–26. https://doi.org/10.3354/meps177015.

    Article  Google Scholar 

  • Mundy, C. J., Gosselin, M., Ehn, J. K., Belzile, C. M., Poulin, M., Alou, E., Roy, S., Hop, H., Lessard, S., Papakyriakou, T. N., Barber, D. G., & Stewart, J. (2011). Characteristics of two distinct high-light acclimated algal communities during advanced stages of sea ice melt. Polar Biology, 34, 1869–1886. https://doi.org/10.1007/s00300-011-0998-x.

    Article  Google Scholar 

  • Nicolaus, M., Katlein, C., Maslanik, J., & Hendricks, S. (2012). Changes in Arctic Sea ice result in increasing light transmittance. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL053738.

  • Olsen, L. M., Laney, S. M., Duarte, P., Kauko, H. M., Fernández-Méndez, M., Mundy, C. J., Rösel, A., Meyer, A., Itkin, P., Cohen, L., Peeken, I., Tatarek, A., Róźańska-Pluta, M., Wiktor, J., Taskjelle, T., Pavlov, A. K., Hudson, S. R., Granskog, M. A., Hop, H., & Assmy, P. (2017). The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis. Journal of Geophysical Research, 122, 1529–1548. https://doi.org/10.1002/2016JG003668.

    Article  Google Scholar 

  • Piiparinen, J., Enberg, S., Rintala, J.-M., Sommaruga, R., Majaneva, M., Autio, R., & Vähätalo, A. V. (2015). The contribution of mycosporine-like amino acids, chromophoric dissilved organic matter and particles to the UV protection of sea-ice organisms in the Balt Sea. Photochemical and Photobiological Sciences, 14, 1025–1038. https://doi.org/10.1039/c4pp00342j.

    Article  Google Scholar 

  • Petrich, C., & Eicken, H. (2017). Overview of sea ice growth and properties, 1-41. In D. N. Thomas (Ed.), Sea Ice (3rd ed., p. 652). Chichester: Wiley Blackwell. https://doi.org/10.1002/9781118778371.ch1.

    Chapter  Google Scholar 

  • Piraino, S., Bluhm, B. A., Gradinger, R., & Boero, F. (2008). Sympagohydra tuuli gen. nov. and sp. nov.. (Cnidaria: Hydrozoa) a cool hydroid from the Arctic Sea ice. Journal of the Marine Biological Association of the United Kingdom, 88, 1637–1642. https://doi.org/10.1017/s0025315408002166.

    Article  Google Scholar 

  • Polashenski, C., Perovich, D., & Courville, Z. (2012). The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research, 117. https://doi.org/10.1029/2011JC007231.

  • Ralph, P. J., Ryan, K. G., Martin, A., & Fenton, G. (2007). Melting out of sea ice causes greater photosynthetic stress in algae than freezing in. Journal of Phycology, 43, 948–956. https://doi.org/10.1111/j.1529-8817.2007.00382.x.

    Article  Google Scholar 

  • Raven, J. (1993). Limits on growth rate. Nature, 361, 209–210.

    Article  Google Scholar 

  • Riebesell, U. (1991). Particle aggregation during a diatom bloom. I. Physical aspects. Marine Ecology Progress Series, 69, 273–280. https://doi.org/10.3354/meps069273.

    Article  Google Scholar 

  • Rózańska, M., Poulin, M., & Gosselin, M. (2008). Protist entrapment in newly formed sea ice in the coastal Arctic Ocean. Journal of Marine Systems, 74, 887–901. https://doi.org/10.1016/j.jmarsys.2007.11.009.

    Article  Google Scholar 

  • Ryan, K. G., Ralph, P. J., & McMinn, A. (2004). Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting. Polar Biology, 27, 679–686. https://doi.org/10.1007/s00300-004-0636-y.

    Article  Google Scholar 

  • Rysgaard, S., Glud, R. N., Sejr, M. K., Blichner, M. E., & Stahl, H. J. (2008). Denitrification activity and oxygen dynamics in Arctic Sea ice. Polar Biology, 31, 527–537. https://doi.org/10.1007/s00300-007-0384-x.

    Article  Google Scholar 

  • Siebert, S., Anton-Erxleben, F., Kiko, R., & Kramer, M. (2009). Sympagohydra tuuli (Cnidaria, hydrozoa): First report from sea ice of the Central Arctic Ocean and insights into histology, reproduction and locomotion. Marine Biology, 156, 541–554. https://doi.org/10.1007/s00227-008-1106-9.

    Article  Google Scholar 

  • Søgaard, D. H., Hansen, P. J., Rysgaard, S., & Glud, R. N. (2011). Growth limitation of three Arctic Sea ice algal species: Effects of salinity, pH, and inorganic carbon availability. Polar Biology, 34, 1157–1165. https://doi.org/10.1007/s00300-011-0976-3.

    Article  Google Scholar 

  • Søgaard, D. H., Thomas, D. N., Rysgaard, S., Glud, R. N., Norman, L., Kaartokallio, H., Juul-Pedersen, T., & Geilfus, N.-X. (2013). The relative contributions of biological and abiotic process to carbon dynamics in subarctic sea ice. Polar Biology, 36, 1761–1777. https://doi.org/10.1007/s00300-013-1396-3.

    Article  Google Scholar 

  • Søreide, J. E., Leu, E., Berge, J., Graeve, M., & Falk-Petersen, S. (2010). Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology, 6, 3154–3163. https://doi.org/10.1111/j.1365-2486.2010.02175.x.

    Article  Google Scholar 

  • Sørensen, L. L., Jensen, B., Glud, R. N., McGinnis, D. F., Sejr, M. K., Sievers, J., Søgaard, D. H., Tison, J. L., & Rysgaard, S. (2014). Parameterization of atmospheric-surface exchange of CO2 over sea ice. The Cryosphere, 8, 853–866. https://doi.org/10.5194/tc-8-853-2014.

    Article  Google Scholar 

  • Szymanski, A., & Gradinger, R. (2016). The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea. Polar Biology, 39, 309–325. https://doi.org/10.1007/s00300-015-1783-z.

    Article  Google Scholar 

  • Taraldsvik, M., & Myklestad, S. M. (2000). The effect of pH on the growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. European Journal of Phycology, 35, 189–194. https://doi.org/10.1080/09670260010001735781.

    Article  Google Scholar 

  • Tedesco, L., Vichi, M., & Thomas, D. N. (2012). Process studies on the ecological coupling between sea ice algae and phytoplankton. Ecological Modelling, 226, 120–138. https://doi.org/10.1016/j.ecolmodel.2011.11.011.

    Article  Google Scholar 

  • Thomas, D. N., Kattner, G., Engbrodt, R., & Gianelli, V. (2001). Dissolved organic matter in Antarctic Sea ice. Annals of Glaciology, 33, 297–303. https://doi.org/10.3189/172756401781818338.

    Article  Google Scholar 

  • Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-Menge, J. A., Polashenski, C. M., & Light, B. (2015). Seasonal evolution of melt ponds on Arctic Sea ice. Journal of Geophysical Research, 120, 5968–5982. https://doi.org/10.1002/2015JC011030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lund-Hansen, L.C., Søgaard, D.H., Sorrell, B.K., Gradinger, R., Meiners, K.M. (2020). Spring, Summer and Melting Sea Ice. In: Arctic Sea Ice Ecology. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-37472-3_4

Download citation

Publish with us

Policies and ethics