Skip to main content

Mats and Microbialites from Laguna La Brava

  • Chapter
  • First Online:
Microbial Ecosystems in Central Andes Extreme Environments

Abstract

The Salar de Atacama depression is a unique geomorphologic structure in northern Chile and is the oldest and largest evaporitic basin in that country. In the lowest region of the Atacama basin, groundwater surfaces forms a series of lakes that are exposed to the extreme conditions of the salar, including high ultraviolet radiation, low humidity, high water-column conductivity, and arsenic concentrations. Among these lakes, Laguna La Brava harbors a variety of living microbialites and microbial mats. Several studies have determined the microbial diversity and the genomic basis of the main metabolic pathways that allow these microbial ecosystems to thrive in such extreme conditions, which resemble Precambrian/Paleoproterozoic conditions. This chapter reviews the results published since these unusual ecosystems were first described 4 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baumgartner LK, Dupraz C, Buckley DH et al (2009a) Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification. Astrobiology 9:861–874. https://doi.org/10.1089/ast.2008.0329

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner LK, Spear JR, Buckley DH et al (2009b) Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ Microbiol 11:2710–2719. https://doi.org/10.1111/j.1462-2920.2009.01998.x

    Article  PubMed  Google Scholar 

  • Boutt DF, Hynek SA, Munk LA, Corenthal LG (2016) Rapid recharge of fresh water to the halite-hosted brine aquifer of Salar de Atacama, Chile. Hydrol Process 30:4720–4740. https://doi.org/10.1002/hyp.10994

    Article  Google Scholar 

  • Cabral AR, Beaudoin G (2007) Volcanic red-bed copper mineralisation related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Miner Deposita 42:901–912. https://doi.org/10.1007/s00126-007-0141-7

    Article  CAS  Google Scholar 

  • Cabrera D, Pizarro G (1992) Changes in chlorophyll a concentration, copepod abundance and UV and PAR penetration in the water column during the ozone depletion in Antarctic Lake Kitiesh. Arch Hydrobiol 43:123–134

    Google Scholar 

  • Cáceres L, Gómez-Silva B, Garró X et al (2007) Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. J Geophys Res Biogeosciences 112. https://doi.org/10.1029/2006JG000344

    Article  Google Scholar 

  • Casillas-Martinez L, Gonzalez ML, Fuentes-Figueroa Z, Castro CM, Nieves-Mendez D, Hernandez C, Ramirez W, Sytsma RE, Perez-Jimenez J, Visscher PT (2005a) Community structure, geochemical characteristics and mineralogy of a hypersaline microbial Mat, Cabo Rojo, PR. Geomicrobiol J 22(6):269–281

    Article  CAS  Google Scholar 

  • Casillas-Martinez L, Gonzalez ML, Rivera M, Fuentes Z, Nieves D, Hernandez C, RiosVelazquez C, Ramirez W, Visscher PT (2005b) Interrelations among communities, physiological structure and resulting mineralogy in the hypersaline mats of the Cabo Rojo salterns. Geomicrobiol J 22:269–281

    Google Scholar 

  • Corenthal LG, Boutt DF, Hynek SA, Munk LA (2016) Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys Res Lett 43:8017–8025. https://doi.org/10.1002/2016GL070076

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438

    Article  CAS  PubMed  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51(4):745–765

    Article  CAS  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96(3):141–162

    Article  CAS  Google Scholar 

  • Dupraz C, Reid RP, Visscher PT (2011) Modern microbialites. In: Reitner J, Thiel V (eds) Encylopedia of geobiology. Springer, Berlin, pp 617–634

    Google Scholar 

  • Farías ME, Rascovan N, Toneatti DM et al (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8:e53497. https://doi.org/10.1371/journal.pone.0053497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farías ME, Contreras M, Rasuk MC et al (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329. https://doi.org/10.1007/s00792-013-0617-6

    Article  CAS  PubMed  Google Scholar 

  • Farias ME, Rasuk MC, Gallagher KL et al (2017) Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS One 12:e0186867. https://doi.org/10.1371/journal.pone.0186867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AB, Rasuk MC, Visscher PT et al (2016) Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 7:1284. https://doi.org/10.3389/fmicb.2016.01284

    Article  PubMed  PubMed Central  Google Scholar 

  • Glunk C, Dupraz C, Braissant O, Gallagher KL, Verrecchia EP, Visscher PT (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58(3):720–736

    Article  Google Scholar 

  • Lara J, Escudero González L, Ferrero M et al (2012) Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles 16:523–538. https://doi.org/10.1007/s00792-012-0452-1

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Harris JK, Wilcox J et al (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695. https://doi.org/10.1128/AEM.72.5.3685-3695.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinckney JL, Reid RP (1997) Productivity and community composition of stromatolitic microbial mats in the Exuma Cays. Bahamas Facies 36(204207):111116

    Google Scholar 

  • Rasuk MC, Kurth D, Flores MR et al (2014) Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. Microb Ecol 68:483–494. https://doi.org/10.1007/s00248-014-0431-4

    Article  CAS  PubMed  Google Scholar 

  • Risacher F, Alonso H (1996) Geoquimica del Salar de Atacama, parte 2: evolucion de las aguas. Andean Geol 23:123–134

    Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci Rev 63:249–293. https://doi.org/10.1016/S0012-8252(03)00037-0

    Article  CAS  Google Scholar 

  • Ruvindy R, White RAIII, Neilan BA, Burns BP (2016) Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J 10:183–196. https://doi.org/10.1038/ismej.2015.87

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Tomás M, Somogyi A, Medjoubi K, Bergamaschi A, Visscher PT, Van Driessche AES, Gérard E, Farias ME, Contreras M, Philippot P (2018) Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama. Chem Geol 490:13–21

    Article  Google Scholar 

  • Sforna MC, Philippot P, Somogyi A et al (2014) Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat Geosci 7:811–815. https://doi.org/10.1038/ngeo2276

    Article  CAS  Google Scholar 

  • Tkavc R, Gostinčar C, Turk M, Visscher PT, Oren A, Gunde-Cimerman N (2011) Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol Ecol 75(1):48–62

    Article  PubMed  Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Visscher PT, van Gemerden H (1993a) Sulfur cycling in laminated marine microbial ecosystems. In: Oremland RS (ed) Biogeochemistry of global change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_37

    Chapter  Google Scholar 

  • Visscher PT, van Gemerden H (1993b) Sulfur cycling in laminated marine ecosystems. In: Oremland RS (ed) Biogeochemistry of global change: radiatively active trace gases. Chapman and Hall, New York, pp 672–693

    Google Scholar 

  • Visscher PT, Quist P, van Gemerden H (1991) Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Appl Environ Microbiol 57:1758–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt-Eickschen G, Palme H, O’Neill HSC, Allen CM (2009) The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim Cosmochim Acta 73:1755–1778. https://doi.org/10.1016/j.gca.2008.12.013

    Article  CAS  Google Scholar 

  • Wong HL, Smith D-L, Visscher PT et al (2015) Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep 5:15607. https://doi.org/10.1038/srep15607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous financial support provided by Proyectos de Investigación Científica y Tecnológica (PICT) V Bicentenario 2010 1788, 3825, and Centro de Ecología Aplicada (CEA), and acknowledge Luis Ahumada and Marco Contreras for field logistics.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasuk, M.C., Visscher, P.T., Contreras Leiva, M., Farías, M.E. (2020). Mats and Microbialites from Laguna La Brava. In: Farías, M. (eds) Microbial Ecosystems in Central Andes Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-36192-1_15

Download citation

Publish with us

Policies and ethics