Skip to main content

Microbial Nitric Oxide, Nitrous Oxide, and Nitrous Acid Emissions from Drylands

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Reactive nitrogen compounds (Nr, which include NOx (i.e., NO+NO2), N2O, ammonia, and HONO) have a large impact on atmospheric chemical composition and, thus, on climate. Nitric oxide (NO) is a chemically reactive trace gas that reacts with ozone (O3) to form NO2 (Crutzen 1979). The formation of O3 depends on a sensitive relationship between NOx (NO+NO2) and volatile organic compounds (VOC) (Sillman et al. 1990). Thus, even trace levels of NOx can activate O3 production. O3 itself can enrich the troposphere and as a short-lived climate pollutant (SLCP) can affect the climate (Shoemaker et al. 2013). Nitrous oxide (N2O) is among the most important greenhouse gases, together with H2O, CO2, and CH4. N2O has a relatively long lifetime, is enriched in the troposphere, and impacts the earth’s radiative balance (Ciais et al. 2013). When N2O enters the stratosphere, it reacts with O3 to NO, thereby depleting the ozone layer (Crutzen 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona. USA Microb Ecol 56:420–426

    Article  CAS  PubMed  Google Scholar 

  • Agam N, Berliner PR (2004) Diurnal water content changes in the bare soil of a coastal desert. J Hydrometeorol 5:922–933

    Article  Google Scholar 

  • Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments – a review. J Arid Environ 65:572–590

    Article  Google Scholar 

  • Angel R, Conrad R (2009) In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ Microbiol 11(10):2598–2610

    Article  CAS  PubMed  Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54(2):345–358. https://doi.org/10.1006/jare.2002.1094

    Article  Google Scholar 

  • Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty P, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Glob Chang Biol 10:359–373

    Article  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16

    Article  Google Scholar 

  • Bargsten A, Falge E, Pritsch K, Huwe B, Meixner FX (2010) Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types. Biogeosciences 7:1425–1441

    Article  CAS  Google Scholar 

  • Behrendt T, Veres PR, Ashuri F, Song G, Flanz M, Mamtimin B, Bruse M, Williams J, Meixner FX (2014) Characterisation of NO production and consumption: new insights by an improved laboratory dynamic chamber technique. Biogeosciences 11:5463–5492. https://doi.org/10.5194/bg-11-5463-201

    Article  Google Scholar 

  • Behrendt T, Braker G, Song G, Pommerenke B, Dörsch P (2017) Nitric oxide emission response to soil moisture is linked to transcriptional activity of functional microbial groups. Soil Biol Biochem 115:337–345

    Article  CAS  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35(2):128–135

    Article  CAS  Google Scholar 

  • Bender M, Conrad R (1994) Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochemistry 27:97–112

    Article  CAS  Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollmann A, Conrad R (1997) Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biol Biochem 29(7):1067–1077

    Article  CAS  Google Scholar 

  • Borken W, Horn MA, Geimer S, Aguilar NAB, Knorr KH (2016) Associative nitrogen fixation in nodules of the conifer Lepidothamnus fonkii (Podocarpaceae) inhabiting ombrotrophic bogs in southern Paragonia. Sci Rep 6:39072. https://doi.org/10.1038/srep39072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouskill NJ, Tang J, Riley WJ, Brodie EL (2012) Trait-based representation of biological nitrification: model development, testing, and predicted community composition. Front Microbiol 3:364. https://doi.org/10.3389/fmicb.2012.00364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16(4):1058. https://doi.org/10.1029/2001GB001811

    Article  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16(4):1080. https://doi.org/10.1029/2001GB001812

    Article  CAS  Google Scholar 

  • Bowman AF, Boumans LJM, Batjes NH (2002) Modelling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16(4):1080

    Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils – what matters for their functioning? Adv Appl Microbiol 75:33–70

    Article  CAS  PubMed  Google Scholar 

  • Breuninger C, Oswald R, Kesselmeier J, Meixner FX (2012) The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field. Atmos Meas Tech 5:955–989

    Article  CAS  Google Scholar 

  • Buchen C, Lewicka-Szczebak D, Flessa H, Well R (2018) Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules. Rapid Commun Mass Spectrom 32:1053–1067. https://doi.org/10.1002/rcm.8132

    Article  CAS  PubMed  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caranto JD, Lancaster KM (2017) Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci USA 114(31):8217–8222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casals P, Lopez-Sangil L, Carrara A, Gimeno C, Nogués S (2011) Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa. Global Biogeochem Cycles 25:GB3012. https://doi.org/10.1029/2010GB003973

    Article  CAS  Google Scholar 

  • Casciotti KL, Ward BB (2001) Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67(5):2213–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casciotti KL, Ward BB (2005) Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 52(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Chaparro-Suarez IG, Meixner FX, Kesselmeier J (2011) Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmos Environ 45:5742–5750

    Article  CAS  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Chang Biol 13:1–17

    Article  Google Scholar 

  • Chen XP, Cui ZL, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, Hou P, Yue SC, Römheld V, Zhang SF (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci 108(16):6399–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornthon P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13(2):623–645

    Article  CAS  Google Scholar 

  • Conrad R (1994) Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere. Biogeochemistry 27(3):155–170

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, N2O and NO). Microbiol Rev 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad R, Dentener FJ (1999) The application of compensation point concepts in scaling of fluxes. Dev Atmos Sci 24:205–216

    Google Scholar 

  • Crutzen PJ (1979) Role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7:443–472

    Article  CAS  Google Scholar 

  • Cruz CN, Pandis SN (2000) Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol. Environ Sci Tech 34(20):4313–4319. https://doi.org/10.1021/es9907109

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA (1992a) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102

    Article  CAS  Google Scholar 

  • Davidson EA (1992b) Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: an assessment of probable sources and importance relative to annual fluxes. Ecol Bull 42:149–155

    CAS  Google Scholar 

  • Davidson EA (1993) Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland RS (ed) Biogeochemistry of global change. Springer, Boston, MA, pp 369–386

    Chapter  Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50

    Article  CAS  Google Scholar 

  • Dean JV, Harper JE (1986) Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol 82:718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Singh BK (2016) Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients. Front Microbiol 7:505. https://doi.org/10.3389/fmicb.2016.00505

    Article  PubMed  PubMed Central  Google Scholar 

  • Delon C, Mougin E, Serça D, Grippa M, Hiernaux P, Diawara M, Galy-Lacaux C, Kergoat L (2014) Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali). Biogeosci Discuss 11:11785–11824

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution to Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Ermel M (2014) Microbial formation of nitrous acid and its exchange processes between soils and atmosphere. PhD thesis. Johannes Gutenberg Universität Mainz, Germany, pp 1–131

    Google Scholar 

  • Ermel M, Behrendt T, Oswald R, Derstroff B, Wu D, Hohlmann S, Stönner C, Pommerening-Röser A, Könneke M, Williams J, Meixner FX, Andreae MO, Trebs I, Sörgel M (2018) Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils. Sci Rep 8:1877. https://doi.org/10.1038/s41598-018-20170-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugster W, Merbold L (2015) Eddy covariance for quantifying trace gas fluxes from soils. Soil 1:187–205

    Article  CAS  Google Scholar 

  • Feig GT, Mamtimin B, Meixner FX (2008) Use of laboratory and remote sensing techniques to estimate vegetation patch scale emissions of nitric oxide from an arid Kalahari savanna. Biogeosci Discuss 5:4621–4680

    Article  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 7–21

    Google Scholar 

  • Galbally IE, Roy CR (1978) Loss of fixed nitrogen from soil by nitric oxide exhalation. Nature 275:734–735

    Article  CAS  Google Scholar 

  • Galloway JN (1995) Acid deposition: Perspectives in time and space. Water Air Soil Pollut 85(1):15–24

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. https://doi.org/10.1126/science.1136674

    Article  CAS  PubMed  Google Scholar 

  • Giguere AT, Taylor AE, Suwa Y, Myrold DD, Bottomley PJ (2017) Uncoupling of ammonia oxidation from nitrite oxidation: Impact upon nitrous oxide production in non-cropped Oregon soils. Soil Biol Biochem 104:30–38

    Article  CAS  Google Scholar 

  • Gleeson DB, Müller C, Banerjee S, Ma W, Siciliano SD, Murphy DV (2013) Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol Biochem 42:1888–1891

    Article  CAS  Google Scholar 

  • Goldstick TK, Fatt I (1970) Diffusion of oxygen in solutions of blood proteins. Chem Eng Prog Symp Ser 66:101–113

    CAS  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M, Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19:75–80

    Article  CAS  PubMed  Google Scholar 

  • Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Burgmann H, Ingram LJ, Hamer U, Siljanen HMP, Peltoniemi K, Potthast K, Bañeras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao Y, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindström ES, Basiliko N, Nemergut DR (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214. https://doi.org/10.3389/fmicb.2016.00214

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross PJ, Bemner JM (1992) Acetone problem in use of the acetylene blockage method for assessment of denitrifying activity in soil. Commun Soil Sci Plant Anal 23(13-14):1345–1358

    Article  CAS  Google Scholar 

  • Hakata M, Takahashi M, Zumft W, Sakamoto A, Morikawa H (2003) Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnol 23:249–257

    Article  CAS  Google Scholar 

  • Harrison R, Ellis S, Cross R, Harrison Hodgson J (2002) Emissions of nitrous oxide and nitric oxide associated with the decomposition of arable crop residues on a sandy loam soil in Eastern England. Agronomie 22(7-8):731–738

    Article  Google Scholar 

  • Hartley AE, Schlesinger WH (2000) Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemistry 50:279–300

    Article  CAS  Google Scholar 

  • Hatzenpichler R (2012) Diversity, physiology, and niche differentiation of ammonia oxidizing Archaea. Appl Environ Microbiol 78:7501–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homyak PM, Blankinship JC, Marchus K, Lucero DM, Sickman JO, Schimel JP (2016) Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. Proc Natl Acad Sci 113(19):E2608–E2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homyak PM, Kamiyama M, Sickman JO, Schimel JP (2017) Acidity and organic matter promote abiotic nitric oxide production in drying soils. Glob Chang Biol 23(4):1735–1747

    Article  PubMed  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66(4):620–634

    Article  Google Scholar 

  • Hugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E (2015) Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep 5:13767. https://doi.org/10.1038/srep13767

    Article  Google Scholar 

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes1. Soil Sci Soc Am J 45:311–316. https://doi.org/10.2136/sssaj1981.03615995004500020017x

    Article  CAS  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • International Fertilizer Association (2018) World nitrogen fertilizer consumption. http://www.fertilizer.org. Accessed January 14, 2018

  • Jia Y, Yu G, Gao Y, He N, Wang Q, Jiao C, Zuo Y (2016) Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Sci Rep 6:19810. https://doi.org/10.1038/srep19810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson C, Sanhueza E (1988) Emission of NO from savanna soils during rainy season. J Geophys Res 93:14193–14198

    Article  CAS  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, Griffiths B, Hallin S, Phillippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Chang 4(9):801–805

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106(9):3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC, Sinninghe Damsté JS, Kim GJ, Madsen EL, Rhee SK (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Appl Environ Microbiol 77(24):8635–8647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung MY, Well R, Min D, Giesemann A, Park SJ, Kim JG, Kim SJ, Rhee SK (2013) Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8:1115–1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang R, Mulder J, Dörsch P (2017) Modified method for trapping and analyzing 15N in NO released from soils. Anal Chem 89(7):4124–4130

    Article  CAS  PubMed  Google Scholar 

  • Keiner R, Herrmann M, Küsel K, Popp J, Frosch T (2015) Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Anal Chim Acta 864:39–47. https://doi.org/10.1016/j.aca.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  • Khan S (2009) Factors affecting nitric oxide and nitrous oxide emissions from grazed pasture urine patches under New Zealand conditions. PhD thesis. Lincoln University. Aotearoa, New Zealand, pp 1–237

    Google Scholar 

  • Kidron GJ, Posmanik R, Brunner T, Nejidat A (2016) Spatial abundance of microbial nitrogen-transforming genes and inorganic nitrogen in biocrusts along a transect of an arid sand dune in the Negev Desert. Soil Biol Biochem 83:150–159

    Article  CAS  Google Scholar 

  • Kirkman GA, Yang WX, Meixner FX (2001) Biogenic nitric oxide emissions up-scaling: an approach to Zimbabwe. Global Biogeochemical Cycles 15(4):1005–1020

    Article  CAS  Google Scholar 

  • Klotz MG, Stein LY (2011) Genomics of ammonia-oxidizing bacteria and insights into their evolution. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington DC, pp 57–94

    Chapter  Google Scholar 

  • Knorr KH, Horn MA, Borken W (2015) Significant nonsymbiotic nitrogen fixation in Patagonian ombrotrophic bogs. Glob Chang Biol 21(6):2357–2365

    Article  PubMed  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Mol Biol Rev 46:43–70

    CAS  Google Scholar 

  • Kobayashi M, Matsuo Y, Takimoto A, Suzuki S, Maruo F, Shoun H (1996) Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. J Biol Chem 271:16263–16267

    Article  CAS  PubMed  Google Scholar 

  • Kolb S, Horn MA (2012) Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol 3:78. https://doi.org/10.3389/fmicb.2012.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marince archaeon. Nature 437:543–566

    Article  PubMed  CAS  Google Scholar 

  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Schada von Borzyskowski L, Erb TJ, Stahl DA, Berg IA (2014) Ammonia-oxidizing archaea use the most energy-efficient-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci 111(22):8239–8244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kool DM, Dolfing J, Wrage N, Groenigen JWV (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem 43:174–178

    Article  CAS  Google Scholar 

  • Krämer M, Baumgärtner M, Bender M, Conrad R (1990) Consumption of NO by methanotrophic bacteria in pure culture and in soil. FEMS Microbiol Ecol 73:345–350

    Article  Google Scholar 

  • Kravchenko AN, Toosi ER, Guber AK, Ostrom NE, Yu J, Azeem K, Rivers ML, Robertson GP (2017) Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat Geosci 10:496–500. https://doi.org/10.1038/ngeo2963

    Article  CAS  Google Scholar 

  • Kumon Y, Sasaki Y, Kato I, Takaya N, Shoun H, Beppu T (2002) Codenitrification and denitrification are dual metabolic Pathways through which dinitrogen evolves from nitrate in Streptomyces antibioticus. J Bacteriol 184:2963–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larmola T, Leppanen SM, Tuittila ES, Aarva M, Merila P, Fritze H, Tiirola M (2013) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci U S A 111(2):734–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laville P, Flura B, Gabrielle B, Loubet O, Fanucci M, Rolland N, Cellier P (2009) Characterisation of soil emissions of nitric oxide at field and laboratory scale using high resolution method. Atmos Environ 43(16):2648–2658

    Article  CAS  Google Scholar 

  • Lees H (1952) Hydroxylamine as an intermediate in nitrification. Nature 169:156–157

    Article  CAS  Google Scholar 

  • Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F (2015) Nitrous oxide and methane emissions from cryptogamic covers. Glob Chang Biol 21(10):3889–3900

    Article  PubMed  Google Scholar 

  • Lenhart K, Behrendt T, Greiner S, Steinkamp J, Well R, Giesemann A, Keppler F (2018) Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist 221:1398–1408. https://doi.org/10.1111/nph.15455

    Article  CAS  PubMed  Google Scholar 

  • Levine JS, Winstead EL, Parsons DAB, Scholes MC, Scholes RJ, Cofer WR III, Cahoon DR Jr, Sebacher DI (1996) Biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) from savannas in South Africa: the impact of wetting and burning. J Geophys Res 101:23689–23697. https://doi.org/10.1029/96JD01661

    Article  CAS  Google Scholar 

  • Lewicka-Szczebak D, Augustin J, Giesemann A, Well R (2017) Quantifying N2O reduction to N2 based on N2O isotopocules – validation with independent methods (helium incubation and 15N gas flux method). Biogeosciences 14:711–732. https://doi.org/10.5194/bg-14-711-2017

    Article  CAS  Google Scholar 

  • Li XR, Wang XP, Li T, Zhang JG (2002) Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol Fertil Soils 35:147–154

    Article  Google Scholar 

  • Lipschultz F, Zafiriou OC, Wofsy SC, Valois FW, Watson SW (1981) Production of NO and N2O by soil nitrifying bacteria. Nature 294:641–643

    Article  CAS  Google Scholar 

  • Liu B, Mørkved PT, Frostegård Å, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Berns AE, Vereecken H, Wu D, Brüggemann N (2017) Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures. Sci Rep 7:39590. https://doi.org/10.1038/srep39590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Forstner J (2001) Processes, influencing factors, and modelling of nitric oxide surface exchange—an overview. Biogeochemistry 52(3):225–257

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2012) Brock biology of microorganisms. Benjamin Cummings, San Francisco, pp 1–1043

    Google Scholar 

  • Maier RM, Drees KP, Neilson JW, Henderson DA, Quade J, Betancourt JL (2004) Microbial life in the Atacama Desert. Science 306(5700):1289–1290

    Article  CAS  PubMed  Google Scholar 

  • Mamtimin B, Behrendt T, Badawy M, Wagner T, Qi Y, Wu Z, Meixner FX (2015) Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil samples. Atmos Chem Phys 15:867–882. https://doi.org/10.5194/acp-15-867-2015

    Article  CAS  Google Scholar 

  • Mamtimin B, Meixner FX, Behrendt T, Badawy MM, Wagner T (2016) The contribution of soil biogenic NO and HONO emissions from a managed hyper arid ecosystem to the regional NOx emissions during growing season. Atmos Chem Phys 16:10175–10194

    Article  CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl D (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  • Martens-Habbena W, Qin W, Horak REA, Urakawa H, Schauer AJ, Moffett JW, Armbrust EV, Ingalls AE, Devol AH, Stahl DA (2015) The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 17:2261–2274. https://doi.org/10.1111/1462-2920.12677

    Article  CAS  PubMed  Google Scholar 

  • Marusenko Y, Garcia-Pichel F, Hall SJ (2015) Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils. FEMS Microbiol Ecol 91(2):1–11

    Article  PubMed  CAS  Google Scholar 

  • Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O NO, and NO2 in air, O2 and N2 near STP. Atmos Environ 32:1111–1127

    Article  CAS  Google Scholar 

  • Matson PA, Naylor R, Ortiz-Monasterio II (1998) Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280(5360):112–115

    Article  CAS  PubMed  Google Scholar 

  • McCalley CK, Sparks JP (2008) Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156:871–881

    Article  PubMed  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326(5954):837–840

    Article  CAS  PubMed  Google Scholar 

  • McHugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E (2015) Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep 5:13767. https://doi.org/10.1038/srep13767

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochemische Zeitung 49:334–336

    Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Delgado JA (1996) CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem Cycles 10(3):387–399

    Article  CAS  Google Scholar 

  • Mosier AR, Kroeze C, Nevison C, Oenema O, Seitzinger SP, Van Cleemput O (1998) OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85

    Article  CAS  Google Scholar 

  • Müller EN, Wainwright J, Parsons AJ, Turnbull L (2014) Patterns of land degradation in drylands: understanding self-organized ecogeomorphic systems. Springer, Netherlands, pp 1–389

    Book  Google Scholar 

  • Nejidat A (2005) Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. FEMS Microbiol Ecol 52(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Orlando J, Carú M, Pommerenke B, Braker G (2012) Diversity and activity of denitrifiers of Chilean arid soil ecosystems. Front Microbiol 3:101. https://doi.org/10.3389/fmicb.2012.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald R (2014) Formation and surface exchange of nitrous acid. PhD thesis. Johannes Gutenberg University, Mainz, Germany, pp 1–131

    Google Scholar 

  • Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Röser A, Sörgel M, Pöschl U, Hoffmann T, Andreae MO, Meixner FX, Trebs I (2013) HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341:1233–1235

    Article  CAS  PubMed  Google Scholar 

  • Palmer K, Horn MA (2012) Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl Environ Microbiol 78:5584–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer K, Horn MA (2015) Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is N-oxide limited. PLoS One 10(4):e0123123. https://doi.org/10.1371/journal.pone.0123123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer K, Drake HL, Horn MA (2010) Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Appl Environ Microbiol 76(4):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission pattern from acidic peat soils in arctic tundra. ISME J 6(5):1058–1077

    Article  CAS  PubMed  Google Scholar 

  • Palmer K, Kopp J, Gebauer G, Horn MA (2016) Drying-rewetting and flooding impact denitrifier activity rather than community structure in a moderately acidic fen. Front Microbiol 7:727. https://doi.org/10.3389/fmicb.2016.00727

    Article  PubMed  PubMed Central  Google Scholar 

  • Pape L, Ammann C, Nyfeler-Brunner A, Spirig C, Hens K, Meixner FX (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429

    Article  CAS  Google Scholar 

  • Park S, Pérez T, Boering KA, Trumbore SE, Gil J, Marquina S, Tyler SC (2011) Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochem Cycles 25:GB1001. https://doi.org/10.1029/2009GB003615

    Article  CAS  Google Scholar 

  • Parrish DD, Williams EJ, Fahey DW, Liu SC, Fehsenfeld FC (1987) Measurement of nitrogen oxide fluxes from soils: intercomparison of enclosure and gradient measurement techniques. J Geophys Res 92:2165–2171

    Article  CAS  Google Scholar 

  • Pennanen T, Fritze H, Vanhala P, Kiikkila O, Neuvonen S, Baath E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Appl Environ Microbiol 64:2173–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez T, Trumbore SE, Tyler SC, Davidson EA, Keller M, de Camargo PB (2000) Isotopic variability of N2O emissions from tropical forest soils. Global Biogeochem Cycles 14(2):525–535

    Article  Google Scholar 

  • Philippot L (2002) Denitrifying genes in bacterial and Archaeal genomes. Biochim Biophys Acta 1577:355–376

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv Agron 96:249–305

    Article  CAS  Google Scholar 

  • Philippot L, Hallin S, Börjesson G, Baggs EM (2009) Biochemical cycling in the rhizo-sphere having an impact on global change. Plant and Soil 321:61–81

    Article  CAS  Google Scholar 

  • Phillips RL, McMillan AMS, Palmada D, Dando J, Giltrap D (2014) Temperature effects on N2O and N2 denitrification end-products for a New-Zealand pasture soil. N Z J Agric Res 58(1):89–95

    Article  CAS  Google Scholar 

  • Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc Lond B Biol Sci 368:20130126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Placella SA, Firestone MK (2013) Transcriptional response of nitrifying communities to wetting of dry soil. Appl Environ Microbiol 79:3294–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci USA 109(27):10931–10936. https://doi.org/10.1073/pnas.1204306109

    Article  PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20(11):523–531

    Article  CAS  PubMed  Google Scholar 

  • Ravi S, Zobeck TM, Okin GS, Over TM, D’Odorico P (2006) On the effect of wet-bonding forces in air-dry soils on the threshold friction velocity of wind erosion. Sedimentology 53:597–609

    Article  Google Scholar 

  • Remde A, Slemr F, Conrad R (1989) Microbial production and uptake of nitric oxide in soil. FEMS Microbiol Ecol 62:221–230

    Article  CAS  Google Scholar 

  • Ren T, Roy R, Knowles R (2000) Production and consumption of nitric oxide by three methanotrophic bacteria. Appl Environ Microbiol 66:3891–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocca JD, Hall EK, Lenon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD (2015) Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J 9:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Rudolph J, Rothfuss F, Conrad R (1996) Flux between soil and atmosphere, vertical concentration profiles in soil, and turnover of nitric oxide: 1. Measurements on a model soil core. J Atmos Chem 23:253–273

    Article  CAS  Google Scholar 

  • Rummel U, Ammann C, Gut A, Meixner FX, Andreae MO (2002) Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest. J Geophys Res 107(D20):LBA 17–1-LBA 17-9

    Article  CAS  Google Scholar 

  • Russow R, Strange CF, Neue H-U (2009) Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem 41:785–795

    Article  CAS  Google Scholar 

  • Saad OALO, Conrad R (1993) Temperature dependence of nitrification, denitrification and turnover of nitric oxide in different soils. Biol Fertil Soils 15:21–27

    Article  CAS  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodríguez G, Massol-Deyá A, Kirshnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Löffler F (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. PNAS 109(48):19709–19714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharko NK, Schütte UM, Berke AE, Banina L, Peel HR, Donaldson MA, Hemmerich C, White JR, Raff JD (2015) Combined flux chamber and genomics approach links nitrous acid emissions to ammonia oxidizing bacteria and archaea in urban and agricultural soil. Environ Sci Tech 49(23):13825–13834

    Article  CAS  Google Scholar 

  • Scharko NK, Martin ET, Losovyj Y, Peters DG, Raff JD (2017) Evidence for quinone redox chemistry mediating daytime and nighttime NO2-to-HONO conversion on soil surfaces. Environ Sci Tech 51(17):9633–9643

    Article  CAS  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper LA, Hobbs JK, Rutlede S, Arcus VL (2014) Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 20:3578–3586

    Article  PubMed  Google Scholar 

  • Schlüter S, Henjes S, Zawallich J, Bergaust L, Horn M, Ippisch O, Vogel H-J, Dörsch P (2018) Denitrification in soil aggregate analogues-effect of aggregate size and oxygen diffusion. Front Environ Microbiol 6:17. https://doi.org/10.3389/fenvs.2018.00017

    Article  Google Scholar 

  • Scholes MC, Martin R, Scholes RJ, Parsons D, Winstead E (1997) NO and N2O emissions from savanna soils following the first simulated rains of the season. Nutr Cycl Agroecosyst 48:115–122

    Article  CAS  Google Scholar 

  • Shoemaker JK, Schrag DP, Molina MJ, Ramanathan V (2013) What role for short-lived climate pollutants in mitigation policy? Science 342:1323–1324

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Kanno H (1994) Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions. Fertil Res 39(2):147–152

    Article  CAS  Google Scholar 

  • Sickman JO, James AE, Fenn ME, Bytnerowicz A, Lucero DM, Homyak PM (2019) Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci Total Environ 646:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Sillman S, Logan JA, Wofsy SC (1990) The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J Geophys Res 95(D2):1837–1851

    Article  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, control and mitigation options. Nutr Cycl Agroecosyst 48(1997):139–153

    Article  CAS  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Article  Google Scholar 

  • Smart DR, Bloom AJ (2001) Wheat leaves emit nitrous oxide during nitrate assimilation. Proc Natl Acad Sci 98:7875–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damsté JS, LePaslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow LA, Uren NC (2014) Manganese oxidation and reduction in soils: effects of temperature, water potential, pH and their interactions. Soil Res 52:483–494. https://doi.org/10.1071/SR13159

    Article  CAS  Google Scholar 

  • Spiro S (2012) Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors. Philos Trans R Soc Lond B Biol Sci 367(1593):1213–1225. https://doi.org/10.1098/rstb.2011.0309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spott O, Russow R, Stange CF (2011) Formation of hybrid N2O and hybrid N2 due to codenitrification: first review of a barely considered process of microbially mediated N-nitrosation. Soil Biol Biochem 43(10):1995–2011

    Article  CAS  Google Scholar 

  • Stahl D, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101

    Article  CAS  PubMed  Google Scholar 

  • Stein LY, Klotz MG (2011) Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 39(6):1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp J, Lawrence MG (2011) Improvement and evaluation of simulated global biogenic soil NO emissions in an AC_GCM. Atmos Chem Phys 11:6063–6082

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  • Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U (2011) Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616–1618

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BW, Selmants PC, Hart SC (2012) New evidence that high potential nitrification rates occurred in soils during dry seasons: are microbial communities metabolically active during dry seasons? Soil Biol Biochem 53:28–31

    Article  CAS  Google Scholar 

  • Taylor AE, Giguere AT, Zoebelein CM, Myrold DD, Bottomley PJ (2016) Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. Int Soc Microb Ecol J 11:896–908

    Google Scholar 

  • Thion C, Prosser JI (2014) Differential response of nonadapted ammonia-oxidizing archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol 90:380–389

    CAS  PubMed  Google Scholar 

  • Turpin BJ, Saxena P, Allen G, Koutrakis P, McMurry P, Hildemann L (1997) Characterization of the southwestern desert aerosol, Meadview, AZ. J Air Waste Manage Assoc 47:334–356

    Article  Google Scholar 

  • United Nations Environmental Programme (UNEP) (1997) In: Middleton NJ, Thomas DSG (eds) World atlas of desertification. Arnold, London, pp 1–182

    Google Scholar 

  • van Cleemput O, Samater AH (1996) Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertil Res 45:81–89

    Article  Google Scholar 

  • Van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Spanning RJM, Richardson DJ, Ferguson SJ (2007) Introduction to the biochemistry and molecular biology of denitrification. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 3–4

    Chapter  Google Scholar 

  • Venterea RT, Rolston DE (2000) Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Glob Chang Biol 6:303–316

    Article  Google Scholar 

  • Verchot LV, Davidson EA, Cattanio JH, Ackerman IL, Erickson HE, Keller M (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochem Cycles 13:31–46

    Article  CAS  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci 368(1621):20130119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward BB (2003) Significance of anaerobic ammonium oxidation in the ocean. Trends Microbiol 11:408–410

    Article  CAS  PubMed  Google Scholar 

  • Ward BB, Arp DJ, Klotz MG (eds) (2011) Nitrification. ASM Press, American Society for Microbiology, Washington, DC, pp 1–433

    Google Scholar 

  • Weber B, Wu D, Tamm A, Ruckteschler N, Rodriguez-Caballero E, Steinkamp J, Meusel H, Elbert W, Behrendt T, Sörgel M, Cheng Y, Crutzen PJ, Su H, Pöschl U (2015) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci USA 112(50):15384–14389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Chen Z, Dannemann M, Carminati A, Willibald G, Kiese R, Wolf B, Veldkamp E, Butterbach-Bahl K, Corre MD (2016) Disentangling gross N2O production and consumption in soil. Sci Rep 6:36517. https://doi.org/10.1038/srep36517

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrage N, van Groenigen JW, Oenema O, Baggs EM (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Spectrom 19:3298–3306

    Article  CAS  PubMed  Google Scholar 

  • Wrage-Mönnig N, Horn MA, Well R, Müller C, Velthof G, Oenema O (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem 123:A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020

    Article  CAS  Google Scholar 

  • Wu D, Kampf CJ, Pöschl U, Oswald R, Cui J, Ermel M, Hu C, Trebs I, Sörgel M (2014a) Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies. Environ Sci Tech 48(14):8021–8027

    Article  CAS  Google Scholar 

  • Wu F, Zhang D, Cao J, Zhang T, An Z (2014b) Background-like nitrate in desert air. Atmos Environ 84:39–43

    Article  CAS  Google Scholar 

  • Yang WX, Meixner FX, Welling M (1996) Laboratory studies on the release of nitric oxide from a grassland soil (Marondera, Zimbabwe). Ann Geophys 14(S II):C 72

    Google Scholar 

  • Yu Z, Elliott EM (2017) Novel method for nitrogen isotopic analysis of soil-emitted nitric oxide. Environ Sci Tech 51:6268–6278

    Article  CAS  Google Scholar 

  • Yu J, Meixner FX, Sun W, Liang Z, Chen Y, Mamtimin B, Wang G, Sun Z (2008) Biogenic nitric oxide emission from saline sodic soils in a semiarid region, northeastern China: a laboratory study. J Geophys Res 113:1–11

    Google Scholar 

  • Yun SI, Ro HM (2014) Can nitrogen isotope fractionation reveal ammonia oxidation responses to varying soil moisture? Soil Biol Biochem 76:136–139

    Article  CAS  Google Scholar 

  • Zacharia IG, Deen WM (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33(2):214–222

    Article  PubMed  Google Scholar 

  • Zhang J, Müller C, Zhu T, Cheng Y, Cai Z (2011) Heterotrophic nitrification is the predominant NO3 production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China. Biol Fertil Soils 47:533. https://doi.org/10.1007/s00374-011-0567-z

    Article  CAS  Google Scholar 

  • Zörner J, de Vries MP, Beirle S, Sihler H, Veres PR, Williams J, Wagner T (2016) Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems. Atmos Chem Phys 16:9457–9487

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors want to express their gratitude to Franz X. Meixner for his great expertise on chamber design and the transfer of knowledge of several decades’ and fruitful discussions about dynamic chamber measurements and soil incubations. Many thanks also to Christiane Wilkinson Runyan for her valuable comments and her help in editing this chapter. The work has been funded by the Max Planck Society, Deutsche Forschungsgemeinschaft (DFG) CRC 1076 “AquaDiva,” and the research unit “DFG-FOR 2337: Denitrification in Agricultural Soils—Integrated Control and Modeling at Various Scales (DASIM).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Behrendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behrendt, T., Agam, N., Horn, M.A. (2019). Microbial Nitric Oxide, Nitrous Oxide, and Nitrous Acid Emissions from Drylands. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_13

Download citation

Publish with us

Policies and ethics