Skip to main content

Patterns of Microorganisms Inhabiting Antarctic Freshwater Lakes with Special Reference to Aquatic Moss Pillars

  • Chapter
  • First Online:
The Ecological Role of Micro-organisms in the Antarctic Environment

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

The Antarctic continent has ice-free areas with many freshwater lakes that support life. These lakes are generally ultra-oligotrophic and possess simplified food chains dominated by microorganisms with algal and cyanobacterial mats often occurring in the lake bottoms. In association with such mats, aquatic mosses sometimes form unique towerlike structures called “moss pillars.” Previous microflora analysis revealed the presence of several key groups (e.g., Leptolyngbya and Bradyrhizobium species) and uncultivated novel lineages in the pillars and the fact that the bacterial communities differ among the pillar sections. A wide range of eukaryotic phylotypes associated with algae, ciliates, fungi, nematodes, rotifers, and tardigrades, as well as unclassified phylotypes, were detected in the pillars. Moss pillars colonizing the nutrient-limited lakes are likely formed by a synergistic association of diverse organisms including both primary producers and decomposers. Indeed, a potential functional zonation, possibly reflected by different redox conditions within the pillar structure, was identified during the analyses of functional genes (e.g., CO2 fixation-coding genes). Interestingly, multiple sequences related to moss pillar-derived sequences were also observed in other Antarctic habitats. These findings provide clues toward solving a conundrum pertaining to Antarctic lake ecosystems: biomass-rich communities existing in the nutrient-poor conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J., & McKay, C. P. (2011). Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology, 9, 280–293.

    Article  CAS  PubMed  Google Scholar 

  • Bass, D., Howe, A. T., Mylnikov, A. P., Vickerman, K., Chao, E. E., Edwards Smallbone, J., Snell, J., Cabral, C., & Cavalier-Smith, T. (2009). Phylogeny and classification of Cercomonadida (Protozoa, Cercozoa): Cercomonas, Eocercomonas, Paracercomonas, and Cavernomonas gen. nov. Protist, 160, 483–521.

    Article  PubMed  Google Scholar 

  • Bowman, J. P., McCammon, S. A., Rea, S. M., & McMeekin, T. A. (2000). The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiology Letters, 183, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Bremer, G. B. (1995). Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 295, 89–95.

    Article  Google Scholar 

  • Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., Wilkins, M. J., Wrighton, K. C., Williams, K. H., & Banfield, J. F. (2015). Unusual biology across a group comprising more than 15% of domain bacteria. Nature, 523, 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Casanueva, A., Tuffin, M., Cary, C., & Cowan, D. A. (2010). Molecular adaptations to psychrophily: The impact of ‘omic’ technologies. Trends in Microbiology, 18, 374–381.

    Article  CAS  PubMed  Google Scholar 

  • Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S. P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C., Skidmore, M. L., Vick-Majors, T. J., & Team, W. S. (2014). A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512, 310–313.

    Article  CAS  PubMed  Google Scholar 

  • Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas, W. K., Potter, C., & Bik, H. M. (2016). The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution, 7, 1008–1018.

    Article  Google Scholar 

  • Delgado, M. J., Bonnard, N., Tresierra-Ayala, A., Bedmar, E. J., & Müller, P. (2003). The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology, 149, 3395–3403.

    Article  CAS  PubMed  Google Scholar 

  • Dewel, R. A., Joines, J. D., & Bond, J. J. (1985). A new chytridiomycete parasitizing the tardigrade Milnesium tardigradum. Canadian Journal of Botany, 63, 1525–1534.

    Article  Google Scholar 

  • Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Reviews Microbiology, 6, 725–740.

    Article  CAS  PubMed  Google Scholar 

  • Dumack, K., Schuster, J., Bass, D., & Bonkowski, M. (2016). A novel lineage of ‘naked filose amoebae’; Kraken carinae gen. nov. sp. nov. (Cercozoa) with a remarkable locomotion by disassembly of its cell body. Protist, 167, 268–278.

    Article  PubMed  Google Scholar 

  • Fernández-Valiente, E., Quesada, A., Howard-Williams, C., & Hawes, I. (2001). N2-fixation in cyanobacterial Mats from ponds on the McMurdo ice shelf, Antarctica. Microbial Ecology, 42, 338–349.

    Article  PubMed  Google Scholar 

  • Finlay, B. J., Span, A. S. W., & Harman, J. M. P. (1983). Nitrate respiration in primitive eukaryotes. Nature, 303, 333–336.

    Article  CAS  Google Scholar 

  • Freeman, K. R., Martin, A. P., Karki, D., Lynch, R. C., Mitter, M. S., Meyer, A. F., Longcore, J. E., Simmons, D. R., & Schmidt, S. K. (2009). Evidence that chytrids dominate fungal communities in high-elevation soils. Proceedings of the National Academy of Sciences, 106, 18315–18320.

    Article  CAS  Google Scholar 

  • Gillieson, D., Burgess, J., Spate, A., & Cochrane, A. (1990). An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica. Kingston: The Publications Office, Australian Antarctic Division.

    Google Scholar 

  • Gleason, F. H., Kagami, M., Lefevre, E., & Sime-Ngando, T. (2008). The ecology of chytrids in aquatic ecosystems: Roles in food web dynamics. Fungal Biology Reviews, 22, 17–25.

    Article  Google Scholar 

  • Goldman, C. R., Mason, D. T., & Wood, B. J. B. (1963). Light injury and inhibition in Antarctic freshwater phytoplankton. Limnology and Oceanography, 8, 313–322.

    Article  Google Scholar 

  • Hodgson, D. A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P. R., Taton, A., Squier, A. H., & Keely, B. J. (2004). Environmental factors influencing the pigment composition of in situ benthic microbial communities in East Antarctic lakes. Aquatic Microbial Ecology, 37, 247–263.

    Article  Google Scholar 

  • Howard-Williams, C., Priscu, J. C., & Vincent, W. F. (1989). Nitrogen dynamics in two antarctic streams. Hydrobiologia, 172, 51–61.

    Article  CAS  Google Scholar 

  • Imura, S., Bando, T., Saito, S., Seto, K., & Kanda, H. (1999). Benthic moss pillars in Antarctic lakes. Polar Biology, 22, 137–140.

    Article  Google Scholar 

  • Imura, S., Takahashi, H., & Nakamura, T. (2000). Benthic moss pillars (Koke Bouzu) in Antarctic lakes–analysis of colonization and growth by 14C dating. Summary of Research using AMS Nagoya University, XI, 176–183 in Japanese with English abstract, table, and figures.

    Google Scholar 

  • Imura, S., Bando, T., Seto, K., Ohtani, S., Kudoh, S., & Kanda, H. (2003). Distribution of aquatic mosses in the Sôya coast region, East Antarctica. Polar Bioscience, 16, 1–10.

    Google Scholar 

  • James, S. R., Burton, H. R., McMeekin, T. A., & Mancuso, C. A. (1994). Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in four Antarctic lakes. Antarctic Science, 6, 325–332.

    Article  Google Scholar 

  • Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416–428.

    Article  CAS  PubMed  Google Scholar 

  • Kamp, A., Høgslund, S., Risgaard-Petersen, N., & Stief, P. (2015). Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Frontiers in Microbiology, 6, 1492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kantor, R. S., Wrighton, K. C., Handley, K. M., Sharon, I., Hug, L. A., Castelle, C. J., Thomas, B. C., & Banfield, J. F. (2013). Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. MBio, 4, e00708–e00713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato, K., Arikawa, T., Imura, S., & Kanda, H. (2013). Molecular identification and phylogeny of an aquatic moss species in Antarctic lakes. Polar Biology, 36, 1557–1568.

    Article  Google Scholar 

  • Kerters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P., & Stackebrandt, E. (2006). Introduction to the Proteobacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes, a handbook on the biology of bacteria, Proteobacteria: Alpha and Beta Subclasses (Vol. 5, pp. 3–37). New York: Springer.

    Google Scholar 

  • Kimura, S., Ban, S., Imura, S., Kudoh, S., & Matsuzaki, M. (2010). Limnological characteristics of vertical structure in the lakes of Syowa Oasis, East Antarctica. Polar Science, 3, 262–271.

    Article  Google Scholar 

  • Komárek, O., & Komárek, J. (2010). Diversity and ecology of cyanobacterial microflora of Antarctic seepage habitats: Comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica. In J. Seckbach & A. Oren (Eds.), Microbial mats: Modern and ancient microorganisms in stratified systems (pp. 515–539). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kong, W., Ream, D. C., Priscu, J. C., & Morgan-Kiss, R. M. (2012). Diversity and expression of RuBisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. Applied and Environmental Microbiology, 78, 4358–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoh, S., & Tanabe, Y. (2014). Limnology and ecology of lakes along the Sôya Coast, East Antarctica. Advances in Polar Science, 25, 75–91.

    Google Scholar 

  • Kudoh, S., Kashino, Y., & Imura, S. (2003a). Ecological studies of aquatic moss pillars in Antarctic lakes 3. Light response and chilling and heat sensitivity of photosynthesis. Polar Bioscience, 16, 33–42.

    Google Scholar 

  • Kudoh, S., Tsuchiya, Y., Ayukawa, E., Imura, S., & Kanda, H. (2003b). Ecological studies of aquatic moss pillars in Antarctic lakes 1. Macro structure and carbon, nitrogen and chlorophyll a contents. Polar Bioscience, 16, 11–22.

    Google Scholar 

  • Kudoh, S., Watanabe, K., & Imura, S. (2003c). Ecological studies of aquatic moss pillars in Antarctic lakes 2. Temperature and light environment at the moss habitat. Polar Bioscience, 16, 23–32.

    Google Scholar 

  • Kudoh, S., Tanabe, Y., Matsuzaki, M., & Imura, S. (2009). In situ photochemical activity of the phytobenthic communities in two Antarctic lakes. Polar Biology, 32, 1617–1627.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, M., Kim, M., Takacs-Vesbach, C., Lee, J., Hong, S. G., Kim, S. J., Priscu, J. C., & Kim, O.-S. (2017). Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology, 19, 2258–2271.

    Article  CAS  PubMed  Google Scholar 

  • Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V., Ng, C., Wilkins, D., Raftery, M. J., Gibson, J. A. E., Andrews-Pfannkoch, C., Lewis, M., Hoffman, J. M., Thomas, T., & Cavicchioli, R. (2010). An integrative study of a meromictic lake ecosystem in Antarctica. The ISME Journal, 5, 879–895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laybourn-Parry, J., & Wadham, J. L. (2014). Antarctic lakes. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lepo, J. E., Hanus, F. J., & Evans, H. J. (1980). Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum. Journal of Bacteriology, 141, 664–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lizotte, M. P. (2008). Phytoplankton and primary production. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers: Limnology of Arctic and Antarctic aquatic ecosystems (pp. 157–178). London: University Press.

    Chapter  Google Scholar 

  • López-Bueno, A., Tamames, J., Velázquez, D., Moya, A., Quesada, A., & Alcamí, A. (2009). High diversity of the viral community from an Antarctic Lake. Science, 326, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Luef, B., Frischkorn, K. R., Wrighton, K. C., Holman, H.-Y. N., Birarda, G., Thomas, B. C., Singh, A., Williams, K. H., Siegerist, C. E., Tringe, S. G., Downing, K. H., Comolli, L. R., & Banfield, J. F. (2015). Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications, 6, 6372.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. D. J., Bartram, A. K., & Neufeld, J. D. (2012). Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6, 2067–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mareš, J., Hrouzek, P., Kaňa, R., Ventura, S., Strunecký, O., & Komárek, J. (2013). The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One, 8, e66323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mori, H., Maruyama, T., Yano, M., Yamada, T., & Kurokawa, K. (2018). VITCOMIC2: Visualization tool for the phylogenetic composition of microbial communities based on 16S rRNA gene amplicons and metagenomic shotgun sequencing. BMC Systems Biology, 12, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., Moeller, R., & Queimalinos, C. (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, 40, 1381–1391.

    Article  CAS  Google Scholar 

  • Mystikou, A., Peters, A. F., Asensi, A. O., Fletcher, K. I., Brickle, P., van West, P., Convey, P., & Küpper, F. C. (2014). Seaweed biodiversity in the South-Western Antarctic Peninsula: Surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biology, 37, 1607–1619.

    Article  Google Scholar 

  • Nagano, N., Matsui, S., Kuramura, T., Taoka, Y., Honda, D., & Hayashi, M. (2011). The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Marine Biotechnology, 13, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Naganuma, T., Hua, P. N., Okamoto, T., Ban, S., Imura, S., & Kanda, H. (2005). Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biology, 28, 964–970.

    Article  Google Scholar 

  • Nakai, R., & Naganuma, T. (2015). Diversity and ecology of thraustochytrid protists in the marine environment. In S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, & F. Not (Eds.), Marine protists: Diversity and dynamics (pp. 331–346). Tokyo: Springer.

    Chapter  Google Scholar 

  • Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kanekiyo, A., Kohara, Y., Koi, A., Nakamura, K., Narita, T., Niki, H., Yanagihara, K., & Naganuma, T. (2012a). Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biology, 35, 425–433.

    Article  Google Scholar 

  • Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kohara, Y., Koi, A., Niki, H., Yanagihara, K., & Naganuma, T. (2012b). Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. Polar Biology, 35, 1495–1504.

    Article  Google Scholar 

  • Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kohara, Y., Koi, A., Niki, H., Yanagihara, K., & Naganuma, T. (2012c). Diversity of RuBisCO gene responsible for CO2 fixation in an Antarctic moss pillar. Polar Biology, 35, 1641–1650.

    Article  Google Scholar 

  • Nakai, R., Shibuya, E., Justel, A., Rico, E., Quesada, A., Kobayashi, F., Iwasaka, Y., Shi, G.-Y., Amano, Y., Iwatsuki, T., & Naganuma, T. (2013). Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. Antarctic Science, 25, 219–228.

    Article  Google Scholar 

  • Nelson, W., & Stegen, J. (2015). The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Frontiers in Microbiology, 6, 713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niederberger, T. D., McDonald, I. R., & Cary, S. C. (2012). Archaea. In R. V. Miller & L. G. Whyte (Eds.), Polar microbiology: Life in a deep freeze (pp. 32–61). Washington, DC: ASM Press.

    Google Scholar 

  • Paerl, H. W., & Pinckney, J. L. (1996a). A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 31, 225–247.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W., & Pinckney, J. L. (1996b). Ice aggregates as a microbial habitat in Lake Bonney, Dry Valley lakes, Antarctica: Nutrient-rich microzones in an oligotrophic ecosystem. Antarctic Journal of the United States, 31, 220–222.

    Google Scholar 

  • Paerl, H. W., Pinckney, J. L., & Steppe, T. F. (2000). Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Parker, B. C., Simmons, J. G. M., Love, F. G., Wharton, J. R. A., & Seaburg, K. G. (1981). Modern stromatolites in Antarctic Dry Valley lakes. Bioscience, 31, 656–661.

    Article  Google Scholar 

  • Petit, J. R., Alekhina, I., & Bulat, S. (2005). Lake Vostok, Antarctica: Exploring a subglacial lake and searching for life in an extreme environment. In M. Gargaud, B. Barbier, H. Martin, & J. Reisse (Eds.), Lectures in astrobiology (Vol. I, pp. 227–288). Berlin: Springer.

    Chapter  Google Scholar 

  • Petz, W., Valbonesi, A., Schiftner, U., Quesada, A., & Cynan Ellis-Evans, J. (2007). Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: Endemism or global distribution of species? FEMS Microbiology Ecology, 59, 396–408.

    Article  CAS  PubMed  Google Scholar 

  • Pienitz, R., Doran, P. T., & Lamoureux, S. F. (2008). Origin and geomorphology of lakes in the polar regions. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers: Limnology of Arctic and Antarctic aquatic ecosystems (pp. 25–41). London: University Press.

    Chapter  Google Scholar 

  • Pope, P. B., Smith, W., Denman, S. E., Tringe, S. G., Barry, K., Hugenholtz, P., McSweeney, C. S., McHardy, A. C., & Morrison, M. (2011). Isolation of succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science, 333, 646–648.

    Article  CAS  PubMed  Google Scholar 

  • Priscu, J. C., Adams, E. E., Lyons, W. B., Voytek, M. A., Mogk, D. W., Brown, R. L., McKay, C. P., Takacs, C. D., Welch, K. A., Wolf, C. F., Kirshtein, J. D., & Avci, R. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286, 2141–2144.

    Article  CAS  PubMed  Google Scholar 

  • Quesada, A., & Vincent, W. F. (2012). Cyanobacteria in the cryosphere: Snow, ice and extreme cold. In B. A. Whitton (Ed.), Ecology of cyanobacteria II: Their diversity in space and time (pp. 387–399). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Raghukumar, S. (2002). Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). European Journal of Protistology, 38, 127–145.

    Article  Google Scholar 

  • Roos, J. C., & Vincent, W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34, 118–125.

    Article  Google Scholar 

  • Shivaji, S., & Reddy, G. S. N. (2010). Bacterial biodiversity of Antarctica: Conventional polyphasic and rRNA approaches. In A. K. Bej, J. Aislabie, & R. M. Atlas (Eds.), Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments (pp. 61–93). Boca Raton: CRC Press.

    Google Scholar 

  • Siegert, M. J., Ross, N., & Le Brocq, A. M. (2016). Recent advances in understanding Antarctic subglacial lakes and hydrology. Philosophical Transactions of the Royal Society A, 374, 20140306.

    Article  CAS  Google Scholar 

  • Sohlenius, B., & Boström, S. (2005). The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology, 28, 439–448.

    Article  Google Scholar 

  • Stingl, U., Cho, J. C., Foo, W., Vergin, K. L., Lanoil, B., & Giovannoni, S. J. (2008). Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 55, 395–405.

    Article  CAS  PubMed  Google Scholar 

  • Stokes, N. A., Calvo, L. M. R., Reece, K. S., & Burreson, E. M. (2002). Molecular diagnostics, field validation, and phylogenetic analysis of quahog parasite unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Diseases of Aquatic Organisms, 52, 233–247.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2014). Diplophrys mutabilis sp. nov., a new member of Labyrinthulomycetes from freshwater habitats. Protist, 165, 50–65.

    Article  PubMed  Google Scholar 

  • Takahashi, Y., Yoshida, M., Inouye, I., & Watanabe, M. M. (2016). Fibrophrys columna gen. nov., sp. nov: A member of the family Amphifilidae. European Journal of Protistology, 56, 41–50.

    Article  PubMed  Google Scholar 

  • Tanabe, Y., Kudoh, S., Imura, S., & Fukuchi, M. (2008). Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biology, 31, 199–208.

    Article  Google Scholar 

  • Tanabe, Y., Ohtani, S., Kasamatsu, N., Fukuchi, M., & Kudoh, S. (2010). Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biology, 33, 85–100.

    Article  Google Scholar 

  • Tanabe, Y., Yasui, S., Osono, T., Uchida, M., Kudoh, S., & Yamamuro, M. (2017). Abundant deposits of nutrients inside lakebeds of Antarctic oligotrophic lakes. Polar Biology, 40, 603–613.

    Article  Google Scholar 

  • Taton, A., Grubisic, S., Balthasart, P., Hodgson, D. A., Laybourn-Parry, J., & Wilmotte, A. (2006a). Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiology Ecology, 57, 272–289.

    Article  CAS  PubMed  Google Scholar 

  • Taton, A., Grubisic, S., Ertz, D., Hodgson, D. A., Piccardi, R., Biondi, N., Tredici, M. R., Mainini, M., Losi, D., Marinelli, F., & Wilmotte, A. (2006b). Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology, 42, 1257–1270.

    Article  CAS  Google Scholar 

  • Tsujimoto, M., McInnes, S. J., Convey, P., & Imura, S. (2014). Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biology, 37, 1361–1367.

    Article  Google Scholar 

  • van Berkum, P., & Keyser, H. H. (1985). Anaerobic growth and denitrification among different serogroups of soybean rhizobia. Applied and Environmental Microbiology, 49, 772–777.

    PubMed  PubMed Central  Google Scholar 

  • Verleyen, E., Hodgson, D. A., Sabbe, K., Cremer, H., Emslie, S. D., Gibson, J., Hall, B., Imura, S., Kudoh, S., Marshall, G. J., McMinn, A., Melles, M., Newman, L., Roberts, D., Roberts, S. J., Singh, S. M., Sterken, M., Tavernier, I., Verkulich, S., de Vyver, E. V., Van Nieuwenhuyze, W., Wagner, B., & Vyverman, W. (2011). Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104, 199–212.

    Article  Google Scholar 

  • Vincent, W. F., & Quesada, A. (2012). Cyanobacteria in high latitude lakes, rivers and seas. In B. A. Whitton (Ed.), Ecology of cyanobacteria II: Their diversity in space and time (pp. 371–385). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vincent, W. F., Castenholz, R. W., Downes, M. T., & Howard-Williams, C. (1993a). Antarctic cyanobacteria: Light, nutrients, and photosynthesis in the microbial mat environment. Journal of Phycology, 29, 745–755.

    Article  Google Scholar 

  • Vincent, W. F., Downes, M. T., Castenholz, R. W., & Howard-Williams, C. (1993b). Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. European Journal of Phycology, 28, 213–221.

    Article  Google Scholar 

  • Wharton, R. A., Parker, B. C., & Simmons, G. M. (1983). Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia, 22, 355–365.

    Article  Google Scholar 

  • Wing, K. T., & Priscu, J. C. (1993). Microbial communities in the permanent ice cap of Lake Bonney, Antarctica: Relationships among chlorophyll-a, gravel and nutrients. Antarctic JUS Review, 28, 246–249.

    Google Scholar 

  • Wright, A., & Siegert, M. (2012). A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24, 659–664.

    Article  Google Scholar 

  • Wynn-Williams, D. D. (1990). Ecological aspects of Antarctic microbiology. In K. C. Marshall (Ed.), Advances in microbial ecology (pp. 71–146). Boston: Springer.

    Chapter  Google Scholar 

  • Yau, S., Lauro, F. M., Williams, T. J., Demaere, M. Z., Brown, M. V., Rich, J., Gibson, J. A. E., & Cavicchioli, R. (2013). Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. The ISME Journal, 7, 1944–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama, R., Salleh, B., & Honda, D. (2007). Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience, 48, 329–341.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Photo in Fig. 2.1 was taken during the 56th Japanese Antarctic Research Expedition (JARE-56). We thank Drs. Y. Takahashi and M. Yoshida for providing unpublished data for Fig. 2.5 and Dr. M. Tsujimoto for providing the micrograph for Fig. 2.6. The work on novel labyrinthulomycete lineages in the moss pillars was supported by the Sasakawa Scientific Research Grant (no. 29-726) from The Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakai, R., Imura, S., Naganuma, T. (2019). Patterns of Microorganisms Inhabiting Antarctic Freshwater Lakes with Special Reference to Aquatic Moss Pillars. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_2

Download citation

Publish with us

Policies and ethics