Skip to main content
Log in

Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Light environment, community structure, pigments, and photophysiological properties of mat-forming phytobenthos were studied in four shallow Antarctic lakes in 2007 at maximum water depths of 1.7–2.5 m. All lakes were oligotrophic, and water transparencies were high, enabling 45–60% of photosynthetically active radiation (PAR, 400–700 nm) and 20–40% of ultraviolet radiation (300–400 nm) to reach the lake beds. Phytobenthic mats were dominated by cyanobacteria and green algae. Little PARL (500–700 nm) penetrated through the firm mat in the shallowest lake, while in the other lakes more (>20%) PARL got through the mats to the subsurface mat layers. Photochemical activities indicated almost no photoinhibition but low photosynthetic efficiency in all mat surface layers. Non-photochemical quenching was rarely detected, suggesting excess energy dissipation may not be efficient in the UV-rich environment. There was a positive correlation between photo-protective substances and incident radiation in the mats, and an inverse correlation between such substances and photochemical efficiency, suggesting that the phytobenthos survive by changing a light-protection/utilization balance. The communities under strong UV-B and PAR had firm mat textures and were characterized by high UV/photo-protective substance ratios that make them less transparent. Maximum relative electron transportation rates (rETRmax) and photochemical efficiencies, however, were low, possibly because the protective substances prevent efficient light usage. In contrast, communities under mild light were characterized by lower substance ratios and softer textures, while rETRmax values and photochemical efficiencies were greater. The phytobenthic mat surface seems to act as a filter for strong and harmful light, typically penetrating through the clear water of Antarctic lakes, and produces a milder light environment for the subsurface mat organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ban A, Aikawa S, Hattori H, Sasaki H, Sampei M, Kudoh S, Fukuchi M, Satoh K, Kashino Y (2006) Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03–04. Polar Biosci 19:11–18

    Google Scholar 

  • Demers S, Roy S, Gagnon R, Vignault C (1991) Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar Ecol Prog Ser 76:185–193

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer AS (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    CAS  PubMed  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Modell 42:199–215

    Article  Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431

    Article  Google Scholar 

  • Ellis-Evans JC, Laybourn-Parry J, Bayliss PR, Perriss SJ (1998) Physical, chemical and microbial community characteristics of lakes of the Larsemann Hills, continental Antarctica. Arch Hydrobiol 141:209–230

    CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden

    Google Scholar 

  • Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59(2):377–385

    Article  PubMed  CAS  Google Scholar 

  • Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44(2):447–454

    Google Scholar 

  • Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultra-violet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem Photobiol 56:17–23

    Article  CAS  PubMed  Google Scholar 

  • Goldman CR, Mason DT, Wood BJB (1963) Light injury and inhibition in Antarctic freshwater phytoplankton. Limnol Oceanogr 8:313–322

    Article  Google Scholar 

  • Hawes I, Schwarz A-M (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic Lake. J Phycol 35:448–459

    Article  CAS  Google Scholar 

  • Heath CW (1988) Annual primary productivity of an Antarctic continental lake: phytoplankton and benthic algal mat production strategies. Hydrobiologia 165:77–87

    Article  CAS  Google Scholar 

  • Henshaw T, Laybourn-Parry J (2002) The annual patterns of photosynthesis in two large, freshwater, ultra-oligotrophic Antarctic lakes. Polar Biol 25:744–752

    Google Scholar 

  • Heukelem LV, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 37:247–263

    Article  Google Scholar 

  • Howard-Williams C, Vincent WF (1989) Microbial communities in southern Victoria Land streams (Antarctica) I. Photosynthesis. Hydrobiologia 172:27–38

    Article  Google Scholar 

  • Imura S, Bando T, Saito S, Seto K, Kanda H (1999) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140

    Article  Google Scholar 

  • Imura S, Bando T, Seto K, Ohtani S, Kudoh S, Kanda H (2003) Distribution of aquatic mosses in the Soya Coast region, East Antarctica. Polar Biosci 16:1–10

    Google Scholar 

  • Jialal J, Norkus EP, Cristol L, Grundy SM (1991) β-carotene inhibits the oxidative modification of low-density lipoprotein. Biochem Biophys Acta 1086:134–138

    CAS  PubMed  Google Scholar 

  • Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566

    Article  CAS  Google Scholar 

  • Kashino Y, Kudoh S (2003) Concerted response of xanthophylls-cycle pigments in a marine diatom, Chaetoceros gracillis, to the shift of light condition. Phycol Res 51:168–172

    Article  CAS  Google Scholar 

  • Kashino Y, Fujimoto K, Akamatsu A, Koike H, Satoh K, Kudoh S (1998) Photosynthetic pigment composition of ice algal and phytoplankton assemblages in early spring in Saroma Ko lagoon, Hokkaido, Japan. Proc NIPR Symp Polar Biol 11:22–32

    Google Scholar 

  • Kashino Y, Kudoh S, Hayashi Y, Suzuki Y, Odate T, Hirawake T, Satoh K, Fukuchi M (2002) Strategies of phytoplankton to perform effective photosynthesis in North Water. Deep Sea Res II 49:5049–5061

    Article  CAS  Google Scholar 

  • Kudoh S, Tsuchiya Y, Ayukawa E, Imura S, Kanda H (2003a) Ecological studies of aquatic moss pillars in Antarctic lakes. 1. Macro structure and carbon, nitrogen and Chl a contents. Polar Biosci 16:11–22

    Google Scholar 

  • Kudoh S, Watanabe K, Imura S (2003b) Ecological studies of aquatic moss pillars in Antarctic lakes. 2. Temperature and light environment at the moss habitat. Polar Biosci 16:23–32

    Google Scholar 

  • Kudoh S, Kashino Y, Imura S (2003c) Ecological studies of aquatic moss pillars in Antarctic lakes. 3. Light responses and chilling and heat sensitivity of photosynthesis. Polar Biosci 16:33–42

    Google Scholar 

  • Kudoh S, Imura S, Kashino Y (2003d) Xanthophyll cycle of ice algae on the sea ice bottom in Saroma Ko lagoon, Hokkaido, Japan. Polar Biosci 16:86–97

    Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96:8784–8789

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto GI, Komori K, Enomoto A, Imura S, Takemura T, Ohyama Y, Kanda H (2006) Environmental changes in Syowa Station area of Antarctica during the last 2300 years inferred from organic components in lake sediment cores. Polar Biosci 19:51–62

    CAS  Google Scholar 

  • McMinn A, Hegseth EN (2004) Quantum yield and photosynthetic parameters of marine microalgae from the southern Arctic Ocean, Svalbard. J Mar Biol Assoc UK 84:865–871

    Article  CAS  Google Scholar 

  • Miura H, Maemoku H, Igarashi A, Moriwaki K (1998) Late quaternary raised beach deposits and radiocarbon dates of marine fossils around Lützow-Holm Bay. Special map series of NIPR 6, National Institute of Polar Research, Tokyo

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    Article  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    Article  CAS  PubMed  Google Scholar 

  • Olaizola M, Roche JLA, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:275–282

    Article  Google Scholar 

  • Pfündel EE, Pan R-S, Dilley RA (1992) Inhibition of violaxanthin deep oxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol 98:1372–1380

    Article  PubMed  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Vincent WF (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol 32:335–342

    Article  Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol Ecol 28:315–323

    Article  CAS  Google Scholar 

  • Quesada A, Fernandez-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 179–196

    Chapter  Google Scholar 

  • Roos JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:118–125

    Article  Google Scholar 

  • Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319

    Article  Google Scholar 

  • Sakshaug E, Demers S, Yentch CM (1987) Thalassiosira oceanica and T. pseudonana: two different photoadaptational responses. Mar Ecol Prog Ser 41:275–282

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  • Simmons GM, Vestal JR, Wharton RA (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: Green WJ, Eriedmann EI (eds) Physical and biogeochemical processes in Antarctic Lakes. Antarctic Research Series, vol 59. American Geophysical Union, Washington, DC, pp 197–214

    Google Scholar 

  • Squyres SW, Andersen DW, Nedell SS, Wharton RA (1991) Lake Hoare, Antarctica—sedimentation through a thick perennial ice cover. Sedimentology 38:363–379

    Article  CAS  PubMed  Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    Article  CAS  Google Scholar 

  • Suh H-J, Lee H-W, Jung J (2003) Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency. Photochem Photobiol 78:109–113

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y, Kudoh S, Imura S, Fukuchi M (2008) Phytoplankton blooms under dim and cold conditions in freshwater lakes of East Antarctica. Polar Biol 31:199–208

    Article  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181

    Article  Google Scholar 

  • Telfer A, Rivas JDL, Barber J (1991) β-carotene within the isolated photosystem II reaction centre: photo-oxidation and irreversible bleaching of this chromophore by oxidised P680. Biochim Biophys Acta 1060:106–114

    Article  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vincent WF, Quesada A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. Antarctic Res Ser 62:111–124

    Google Scholar 

  • Vincent WF, Downes MT, Castenholz RW, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic Ice-Covered Lakes to Solar UV Radiation. Limnol Oceanogr 43:618–624

    Google Scholar 

  • Wharton RA, Parker BC, Simmons GM (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22:355–365

    Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum Press, New York, pp 71–146

    Google Scholar 

  • Zonneveld C (1998) Photoinhibition as affected by photoacclimation in phytoplankton: a model approach. J Theor Biol 193:115–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge all the members of the 48th Japanese Antarctic Research Expedition (JARE), especially its summer party leader Dr. T. Odate, for their support. We thank Ms A. Sugimoto, Dr T. Hoshino, and Dr D. Han for assistance with nutrient analysis and the field research. This study was carried out under the project named “Studies on climate processes and ecosystem dynamics in polar region”, sub-theme “Ecological studies on Antarctic terrestrial and lake environments” in the JARE-48th research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Tanabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 675 kb)

Supplementary material 2 (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, Y., Ohtani, S., Kasamatsu, N. et al. Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33, 85–100 (2010). https://doi.org/10.1007/s00300-009-0687-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0687-1

Keywords

Navigation