Skip to main content

Cyanobacteria in the Cryosphere: Snow, Ice and Extreme Cold

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

This chapter explores the occurrence and dominance of cyanobacteria in some of the harshest environments on earth, the cryosphere, where extreme cold and the near absence of liquid water provide severe constraints on growth and survival. They are present in ice-based ecosystems including snow, glacier ice, lake ice and ice-shelves, and sometimes achieve remarkably high biomass concentrations. Cold desert ecosystems in the Arctic and Antarctica also contain a variety of habitats colonized by cyanobacteria, although their diversity is low, and similar taxa are present in different geographic locations under similar ecological conditions. The strategy for microbial success in these environments is not adaptation towards optimal growth at low temperatures, but instead rests on tolerance to environmental extremes. An ability to survive prolonged dormancy is also an important feature accounting for the widespread occurrence of cyanobacteria in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Banerjee M, Whitton BA, Wynn-Williams DD (2000) Phosphatase activities of endolithic communities in rocks of the Antarctic Dry Valleys. Microb Ecol 39:80–91

    Article  PubMed  CAS  Google Scholar 

  • Bonani G, Friedmann EI, Ocampo-Friedmann R, McKay CP, Woelfi W (1988) Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Polarforschung 58:199–200

    PubMed  CAS  Google Scholar 

  • Bowman JS, Rasmussen S, Blom N, Deming JW, Rysgaard S, Sicheritz-Ponten T (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME J 6:11–20

    Article  PubMed  Google Scholar 

  • Brinkmann M, Pearce DA, Convey P, Ott S (2007) The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biol 30:1505–1511

    Article  Google Scholar 

  • Broady PA (1979) The terrestrial algae of Signy Island, South Orkney Islands, Scientific reports of the British Antarctic Survey 98. British Antarctic Survey, Cambridge

    Google Scholar 

  • Broady PA (1981) Ecological and taxonomic observations on subaerial epilithic algae from Princess Elisabeth and MacRobertson Land, Antarctica. Br Phycol J 16:257–266

    Article  Google Scholar 

  • Broady PA (1986) Ecology and taxonomy of the Vestfold Hills. In: Pickard J (ed) Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Academic, Sydney, pp 165–202, 367 pp

    Google Scholar 

  • Broady PA (1989) Survey of algae and other terrestrial biota from Edward VII Peninsula, marie Byrd Land. Antarct Sci 1:215–224

    Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor valley, Antarctica. J Phycol 44:1415–1424

    Article  Google Scholar 

  • Cameron RE (1972) Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antartcica. In: Llano GA (ed) Antarctic terrestrial biology. American Geophysical Union, Washington, DC, pp 195–260

    Chapter  Google Scholar 

  • Cavacini P (2001) Soil algae from northern Victoria Land (Antarctica). Polar Biosci 14:45–60

    Google Scholar 

  • Christner BC, Kvitko BH II, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Cockell CS, Herrera A (2007) Why are some microorganisms boring? Trends Microbiol 16:101–106

    Article  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct Antarct Alp Res 38:335–342

    Article  Google Scholar 

  • Comte K, Sabacka M, Carre-Miouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Tow AL (2004) Endangered Antarctic environments. Ann Rev Microbiol 58:649–690

    Article  PubMed  CAS  Google Scholar 

  • De los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152

    Article  PubMed  Google Scholar 

  • De los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  PubMed  Google Scholar 

  • Erokhina LG, Spirina EV, Shatilovich AV, Gilichinskii DA (2000) Chromatic adaptation of viable ancient cyanobacteria from arctic permafrost. Microbiology 69:855–856

    Article  PubMed  CAS  Google Scholar 

  • Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an active volcano (Deception Island, South Shetlands). Polar Biol 30:1381–1393

    Article  Google Scholar 

  • Fernández-Carazo R, Hodgson DA, Convey P & Wilmotte A (2011). Low cyanobacterial diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80-82ºS), Antarctica. FEMS Microbiol Ecol 77:503–517

    Article  PubMed  Google Scholar 

  • Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349

    Article  PubMed  Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15:243–246

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross desert, Antarctica. Polarforschung 58:251–259

    PubMed  CAS  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77(10):3234–3243

    Article  PubMed  CAS  Google Scholar 

  • Hawes I, Howard-Williams C, Fountain AG (2008) Ice-based freshwater ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers, limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, New York, pp 103–108, 327 pp

    Google Scholar 

  • Hodgson DA, Convey P, Verleyen E, Vyverman W, McInnes SJ, Sands CJ, Fernández-Carazo R, Wilmotte A, De Wever A, Peeters K, Tavernier I, Willems A (2010) The limnology and biology of the Dufek Massif, Transantarctic Mountains (82°S). Polar Sci 4:197–214

    Article  PubMed  Google Scholar 

  • Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the Central Alps. Microb Ecol 58:290–306

    Article  PubMed  CAS  Google Scholar 

  • Howard-Williams C, Pridmore R, Broady P, Vincent WF (1990) Environmental and biological variability in the McMurdo Ice-Shelf ecosystem. In: Kerry K, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin, pp 23–31, 427 pp

    Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565

    Article  PubMed  Google Scholar 

  • Johnston CG, Vestal JR (1986) Does iron inhibit cryptoendolithic communities? Antarct J US 21:225–226

    Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest growing communities on Earth? Appl Environ Microbiol 58:2308–2311

    Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Google Scholar 

  • Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:215–235

    Google Scholar 

  • Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407

    Article  PubMed  Google Scholar 

  • Kleinteich J, Wood SA, Küpper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Change. doi:10.1038/nclimate1418

    Article  PubMed  CAS  Google Scholar 

  • Knowles EJ, Castenholz RW (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 66:261–270

    Article  PubMed  CAS  Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Article  Google Scholar 

  • Laybourn-Parry J, Tranter M, Hodson AJ (2012) The ecology of snow and ice environments. Oxford University Press, Oxford 179 pp

    Article  CAS  Google Scholar 

  • Liu Y, Yao T, Kang S, Jiao N, Zeng YH, Shi Y, Luo TW, Jing ZF, Huang SJ (2006) Seasonal variation of snow microbial community structure in the East Rogbuk glacier, Mt. Everest. Chin Sci Bull 51:1476–1486

    Article  CAS  Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594

    Article  Google Scholar 

  • Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23:205–211

    Article  Google Scholar 

  • McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25

    Article  PubMed  CAS  Google Scholar 

  • Michaud AB, Sabacka M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2012.01297.x

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig 123:173–198

    Google Scholar 

  • Mueller DR, Vincent WF, Jeffries MO (2003) Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys Res Lett 30:2031

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Jeffries MO (2006) Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arct Antarct Alp Res 38:593–607

    Article  Google Scholar 

  • Nadeau T-L, Castenholz RW (2000) Characterization of psychrofilic Oscillatorians (Cyanobacteria) from Antarctic meltwater ponds. J Phycol 36:914–923

    Article  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412, 634 pp

    Google Scholar 

  • Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime. Microb Ecol 16:253–270

    Article  PubMed  CAS  Google Scholar 

  • Omelon CR (2008) Endolithic microbial communities in polar desert habitats. Geomicrobiol J 25:404–414

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2007) Inorganic species distribution and microbial diversity within high arctic cryptoendolithic habitats. Microb Ecol 54:740–752

    Article  PubMed  Google Scholar 

  • Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, Mckay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Fritsen CH, Paerl HW, Fritsen CH, Dore JE, Lisle JT, Wolf CF, Mikuchi JA (2005) Perennial Antarctic lake ice: a refuge for cyano­bacteria in an extreme environment. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton Press, Princeton, pp 22–49, 336 pp

    Google Scholar 

  • Raymond JA, Fritsen CH (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarct Sci 12:418–424

    Article  Google Scholar 

  • Ryan PG, Watkins BP, Smith RIL, Dastych H, Eicker R, Foissner W, Heatwole H, Miller WR (1989) Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species list. S Afr J Antarct Res 19:10–20

    Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816

    Article  PubMed  CAS  Google Scholar 

  • Seaburg KG, Parker BC, Prescott GF, Whitford LA (1979) The algae of southern Victoria Land. A taxonomic and distributional study. J. Cramer Publishers, Stuttgart, 168 pp

    Google Scholar 

  • Stibal M, Sabacká M, Kastovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    Article  PubMed  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Rehak J (2008) Microbial production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Strunecký O, Elster J, Komárek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 33:1419–1428

    Article  Google Scholar 

  • Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol Process 15:3447–3459

    Article  Google Scholar 

  • Takeuchi N, Koshima S (2004) A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct Antarct Alp Res 36:92–99

    Article  Google Scholar 

  • Takeuchi N, Li ZQ (2008) Characteristics of surface dust on Urumqi Glacier No.1 in the Tien Shan Mountains, China. Arct Antarct Alp Res 40:744–750

    Article  Google Scholar 

  • Takeuchi N, Uetake J, Fujita K et al (2006) A snow algal community on Akkem glacier in the Russian Altai mountains. Ann Glaciol 43:378–384

    Article  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to the low temperature environment? J Phycol 33:171–181

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88

    Article  PubMed  CAS  Google Scholar 

  • Thompson G (1989) Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species list. S Afr J Antarct Res 19:10–20

    Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WA, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Google Scholar 

  • Velázquez D, Rochera C, Camacho A, Quesada A (2011) Temperature effects on Antarctic non-marine phototrophic communities. Polar Biol 34:1045–1055

    Article  Google Scholar 

  • Vestal JR (1988) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:960–965

    PubMed  CAS  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 321–340, 669 pp

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 289–304, 811 pp

    Google Scholar 

  • Vincent WF, Howard-Williams C (2000) Life on snowball Earth. Science 287:2421

    Article  CAS  Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Vincent WF, Whyte LG, Lovejoy C, Greer CW, Laurion I, Suttle CA, Corbeil J, Mueller DR (2009) Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci 3:171–180

    Article  Google Scholar 

  • Vishnivetskaya TA (2009) Viable cyanobacteria and green algae from permafrost darkness. In: Margesin R (ed) Permafrost soils, vol 16, Soil biology. Springer, Heidelberg, pp 73–84, 348 pp

    Chapter  Google Scholar 

  • Vishnivetskaya TA, Vorobyova EA, Gilichinsky DA (2002) Viable green algae and cyanobacteria within terrestrial permafrost. In: Sawaya-Lacoste H (ed) Proceedings of the second European workshop on exo-astrobiology. ESA Publications Division, Noordwijk, pp 295–298, 625 pp

    Google Scholar 

  • Vishnivetskaya TA, Spirina EV, Shatilovich AV, Erokhina LG, Vorobyova EA, Gilichinsky DA (2003) The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Int J Astrobiol 2:171–177

    Article  Google Scholar 

  • Walker JJ, Pace NR (2007) Endolithic microbial ecosystems. Ann Rev Microbiol 61:331–347

    Article  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  PubMed  CAS  Google Scholar 

  • Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320

    Article  PubMed  CAS  Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts- life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 341–366, 669 pp

    Google Scholar 

  • Xiang SR, Shang TC, Chen Y, Yao TD (2009) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70:165–176

    Article  CAS  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Ministry of Science and Innovation, Spain, by grant POL2006-06635, the Natural Sciences and Engineering Research Council of Canada, and the Network of Centres of Excellence ArcticNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Quesada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Quesada, A., Vincent, W.F. (2012). Cyanobacteria in the Cryosphere: Snow, Ice and Extreme Cold. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_14

Download citation

Publish with us

Policies and ethics