Skip to main content
Log in

Effect of applied bias voltage on grain boundary potential barrier height (Φ b ) in semiconductor nanocrystals

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Carrier transport through electrically active grain boundaries was studied under biased condition using impedance spectroscopy in the frequency range 1 Hz to 1 MHz for a model system nanocrystalline CuSCN. Since, grain boundaries of semiconductors contain defects which often trap charge carriers and cause to form a potential barrier around them also plays a crucial role in the electrical properties of nanomaterials. The influence of bias voltage on relaxation times of grain (τ g ) and grain boundary (τ gb ) for our wet chemically prepared nanocrystalline CuSCN was estimated at a periodic increment of 0.35 V from 0 V to −4.2 V. In the static case with no applied bias voltage the grain boundary potential barrier height was found to be 0.144 eV. During each periodic increment of applied bias voltages, both the grain and grain boundary relaxation times are decreases it gives direct and unambiguous evidence on the suppression of grain boundary potential barrier height (Φ b ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Shimizu and M. Egashira, MRS Bulletin 24 18 (1999).

    CAS  Google Scholar 

  2. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389 939 (1997).

    Article  CAS  Google Scholar 

  3. C. Lvy-Clment, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, Adv. Mater. 17 1512 (2005).

    Article  Google Scholar 

  4. B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, and M. Grätzel, Adv. Mater. 12 1263 (2000).

    Article  Google Scholar 

  5. B. R. Sankapal, E. Goncalves, A. Ennaoui, and M. Ch. Lux-Steiner, Thin Solid Films 451 128 (2004).

    Article  Google Scholar 

  6. J. F. Bringley, R. S. Eachus, and A. P. Marchetti, J. Phys. Chem. B 106 5346 (2002).

    Article  CAS  Google Scholar 

  7. T. Prakash and S. Ramasamy, J. Nanosci. Nanotechnol. 9 5537 (2009).

    Article  CAS  Google Scholar 

  8. J. R. Macdonald (Ed.) Impedance Spectroscopy: Emphasizing Solid Materials and Systems, p. 8, Wiley, New York (1987).

    Google Scholar 

  9. G. E. Pike and C. H. Seager, J. Appl. Phys. 50 3414 (1979).

    Article  CAS  Google Scholar 

  10. G. E. Pike, Phys. Rev. B 30 795 (1984).

    Article  CAS  Google Scholar 

  11. T. Weiss, R. Lipperheide, U. Wille, and S. Brehme, J. Appl. Phys. 92 1411 (2002).

    Article  Google Scholar 

  12. J. Dugas, J. P. Crest, C. M. Singal, and J. Oualid, Solid State Elec. 26 1069 (1983).

    Article  Google Scholar 

  13. G. Blatter and F. Greuter, Phys. Rev. B 34 8555 (1986).

    Article  CAS  Google Scholar 

  14. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5 111 (1990).

    Article  CAS  Google Scholar 

  15. W. Li and R. W. Schwartz, Phys. Rev. B 75 012104 (2007).

    Article  Google Scholar 

  16. II-Doo Kim, A. Rothschild, and H. L. Tuller, Appl. Phys. Lett. 88 072902 (2006).

    Article  Google Scholar 

  17. P. Balaya, J. Jamik, J. Fleig, and J. Maier, Appl. Phys. Lett. 88 062109 (2006).

    Article  Google Scholar 

  18. M. W. Mancini and P. I. Paulin Filho, J. Appl. Phys. 100 104501 (2006).

    Article  Google Scholar 

  19. K. D. Johnson and V. P. Dravid, Appl. Phys. Lett. 74 621 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, T., Ramasamy, S. Effect of applied bias voltage on grain boundary potential barrier height (Φ b ) in semiconductor nanocrystals. Electron. Mater. Lett. 9, 227–230 (2013). https://doi.org/10.1007/s13391-012-2129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2129-4

Keywords

Navigation