Skip to main content
Log in

Thermoelectric properties of inhomogeneous BCN alloy nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermoelectric properties of inhomogeneous BCN alloy nanotubes are investigated using a first-principles approach and the non-equilibrium Green’s function method based on virtual crystal approximation. The asymmetric distribution of B, C, and N atoms in these nanotubes causes tilted transmission probabilities around the Fermi level, disrupting electron–hole symmetry under varying temperature gradients. Consequently, the thermal charge currents exhibit fascinating behaviors like negative differential thermal resistance and thermoelectric current switching. Reducing the carbon concentration leads to decreased electrical conductance, electronic thermal conductance and Lorenz number but increased Seebeck coefficient and figure of merit. This emphasizes the significance of carbon concentration in tuning the thermoelectric efficiency of these nanotubes, suggesting a possibility for tailored thermoelectric nanomaterial design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This study are available from the corresponding author on reasonable request.

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  ADS  Google Scholar 

  2. H.J. Goldsmid, Measurement techniques, in Introduction to Thermoelectricity. ed. by H.J. Goldsmid (Springer, Berlin, Heidelberg, 2016), pp.125–152

    Chapter  Google Scholar 

  3. H.J. Goldsmid, The Physics of Thermoelectric Energy Conversion (Morgan & Claypool Publishers, Bristol, 2017)

    Book  Google Scholar 

  4. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)

    Article  Google Scholar 

  5. L. Medrano Sandonas, G. Cuba-Supanta, R. Gutierrez, C.V. Landauro, J. Rojas-Tapia, G. Cuniberti, Doping engineering of thermoelectric transport in BNC heteronanotubes. Phys. Chem. Chem. Phys. 21, 1904–1911 (2019)

    Article  Google Scholar 

  6. R.A. Masut, Heat transport in hot extruded bulk polycrystalline thermoelectric alloys based on Bi2Te3. J. Electron. Mater. 52, 6929–6942 (2023)

    Article  ADS  Google Scholar 

  7. J. Qu, A. Balvanz, S. Baranets, S. Bobev, P. Gorai, Computational design of thermoelectric alloys through optimization of transport and dopability. Mater. Horiz.Horiz. 9, 720–730 (2022)

    Article  Google Scholar 

  8. M.M. Al-Fartoos, A. Roy, T.K. Mallick, A.A. Tahir, Advancing thermoelectric materials: a comprehensive review exploring the significance of one-dimensional nano structuring. Nanomaterials (2023). https://doi.org/10.3390/nano13132011

    Article  Google Scholar 

  9. K.J. Lamas-Martínez, J.A. Briones-Torres, S. Molina-Valdovinos, I. Rodríguez-Vargas, Thermoelectric properties of gated phosphorene junctions. Phys. Rev. B 107, 245427 (2023)

    Article  ADS  Google Scholar 

  10. X. Lu, G. Pan, Z. Shi, B. Xu, Y. Lou, Recent advances in interface engineering of thermoelectric nanomaterials. Mater. Chem. Front. 7, 4707–4722 (2023). https://doi.org/10.1039/D3QM00419H

    Article  Google Scholar 

  11. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)

    Article  ADS  Google Scholar 

  12. X. Wei, M.-S. Wang, Y. Bando, D. Golberg, Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. J. Am. Chem. Soc. 132, 13592–13593 (2010)

    Article  Google Scholar 

  13. J. Devarajan, P. Arumugam, G. Govindasamy, Synthesis of BCN nanotubes by CVD method and their electrochemical performance towards supercapacitors. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.039

    Article  Google Scholar 

  14. Y. Zhang, H. Gu, K. Suenaga, S. Iijima, Heterogeneous growth of B–C–N nanotubes by laser ablation. Chem. Phys. Lett. 279, 264–269 (1997)

    Article  ADS  Google Scholar 

  15. Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, R. Gronsky, Synthesis of BxCyNz nanotubules. Phys. Rev. B 51, 11229–11232 (1995)

    Article  ADS  Google Scholar 

  16. B. Shen, N. Fu, Y. Chen, W. Shao, Y. Yan, J. Huang, Z. Yang, Micron SiOx encapsulated into amorphous B, N Co-doped carbon nanotube network for high-capacity and long-durable Li-ion half/full batteries. Chem. Eng. J. 455, 140820 (2023)

    Article  Google Scholar 

  17. L. Cao, Y. Wang, Q. Zhu, L. Fan, Y. Wu, Z. Li, S. Xiong, F. Gu, Co/Co–N/Co–O rooted on rGO hybrid BCN nanotube arrays as efficient oxygen electrocatalyst for Zn–air batteries. ACS Appl. Mater. Interfaces 14, 17249–17258 (2022)

    Article  Google Scholar 

  18. Y. Wang, F. Gu, L. Cao, L. Fan, T. Hou, Q. Zhu, Y. Wu, S. Xiong, TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries. Int. J. Hydrogen Energy 47, 20894–20904 (2022)

    Article  Google Scholar 

  19. Y.O. Yesilbag, F.N. TuzlucaYesilbag, A. Huseyin, M. Ertugrul, The hierarchical synthesis of tungsten disulfide coated vertically aligned boron carbon nitride nanotubes composite electrodes for supercapacitors. J. Energy Storage 52, 104964 (2022)

    Article  Google Scholar 

  20. Y. Huang, T. Yang, H. Yu, X. Li, J. Zhao, G. Zhang, X. Li, L. Yang, J. Jiang, Theoretical calculation of hydrogen generation and delivery via photocatalytic water splitting in boron–carbon–nitride nanotube/metal cluster hybrid. ACS Appl. Mater. Interfaces 12, 48684–48690 (2020)

    Article  Google Scholar 

  21. A.M. Yadollahi, M.R. Niazian, A. Khodadadi, Investigating the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) due to the impurity of a single carbon atom and temperature changes. J. Mol. Graph. Model. 122, 108499 (2023)

    Article  Google Scholar 

  22. N.L. Marana, J.R. Sambrano, S. Casassa, Modeling of BN-doped carbon nanotube as high-performance thermoelectric materials. Nanomaterials (2022). https://doi.org/10.3390/nano12234343

    Article  Google Scholar 

  23. D.-D. Wu, G.-F. Du, H.-H. Fu, Spin-dependent Seebeck effect, and spin-filtering and diode effects in magnetic boron–nitrogen nanotube heterojunctions. J. Mater. Chem. C 8, 4486–4492 (2020)

    Article  Google Scholar 

  24. S. Behzad, R. Chegel, Engineering thermal and electrical properties of B/N doped carbon nanotubes: tight binding approximation. J. Alloy. Compd. 792, 721–731 (2019)

    Article  Google Scholar 

  25. R. Chegel, S. Behzad, Improvement of thermal conductivity in carbon doped BNNTs by electric field. J. Mol. Graph. Model. 116, 108259 (2022)

    Article  Google Scholar 

  26. R. Chegel, Engineering the thermodynamic properties of carbon doped boron nitride nanotubes by impurity concentration and electric field. Chin. J. Phys. 85, 553–570 (2023)

    Article  Google Scholar 

  27. D.-D. Wu, H.-H. Fu, Q.-B. Liu, G.-F. Du, R. Wu, Magnetic nanotubes: a new material platform to realize a robust spin-Seebeck effect and a perfect thermal spin-filtering effect. Phys. Rev. B 98, 115422 (2018)

    Article  ADS  Google Scholar 

  28. M.H. Mohammed, Electronic and thermoelectric properties of zigzag and armchair boron nitride nanotubes in the presence of C island. Chin. J. Phys. 56, 1622–1632 (2018)

    Article  Google Scholar 

  29. T. Yoshioka, H. Suzuura, T. Ando, Electronic states of BCN alloy nanotubes in a simple tight-binding model. J. Phys. Soc. Jpn.Jpn. 72, 2656–2664 (2003)

    Article  ADS  Google Scholar 

  30. M. DarvishiGilan, Rectifying behavior of inhomogeneous BCN alloy nanotubes. Phys. B Cond. Matter 667, 415152 (2023)

    Article  Google Scholar 

  31. H. Mousavi, M. Bagheri, Controlling the bandgap of boron nitride nanotubes with carbon doping. J. Electron. Mater. 44, 2693–2698 (2015)

    Article  ADS  Google Scholar 

  32. M. DarvishiGilan, R. Chegel, Electronic and transport properties of BCN alloy nanoribbons. Phys. E Low-Dimensional Syst. Nanostruct. 97, 177–183 (2018)

    Article  ADS  Google Scholar 

  33. M. DarvishiGilan, R. Chegel, BN-C hybrid nanoribbons as gas sensors. J. Electron. Mater. 47, 1009–1021 (2018)

    Article  ADS  Google Scholar 

  34. R.W. Stark, C.B. Friedberg, Coherent scattering theory for the electronic band structure and quantum-state lifetimes in a dilute substitutional Mg alloy. J. Low Temp. Phys. 14, 175–194 (1974)

    Article  ADS  Google Scholar 

  35. N.J. Ramer, A.M. Rappe, Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1-xTix)O3. Phys. Rev. B 62, R743–R746 (2000)

    Article  ADS  Google Scholar 

  36. L. Bellaiche, D. Vanderbilt, Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877–7882 (2000)

    Article  ADS  Google Scholar 

  37. Y.-H. Li, Y.-L. Li, C. He, Z.-G. Sun, Cobalt doping of Mg3Sb2 monolayer: Improved thermoelectric performance. Phys. Lett. A 463, 128684 (2023)

    Article  Google Scholar 

  38. A. Raphel, P. Vivekanandhan, A.K. Rajasekaran, S. Kumaran, Tuning figure of merit in Na doped nanocrystalline PbSnTeSe high entropy alloy via band engineering. Mater. Sci. Semicond. Process.Semicond. Process. 138, 106270 (2022)

    Article  Google Scholar 

  39. M. Gunes, O. Donmez, C. Gumus, A. Erol, H. Alghamdi, S. Alhassan, A. Alhassni, S. Alotaibi, M. Schmidbauer, H.V.A. Galeti, M. Henini, The effect of strain and spatial Bi distribution on the band alignment of GaAsBi single quantum well structure. Physica B B 602, 412487 (2021)

    Article  Google Scholar 

  40. Z. Li, L. Peng, J. Li, J. Zhou, Z. Sun, Mechanical and transport properties of BixSb2-xTe3 single quintuple layers. Comput. Mater. Sci.. Mater. Sci. 170, 109182 (2019)

    Article  Google Scholar 

  41. J. Yang, Y. Wang, J. Huang, W. Wang, Z. Ye, S. Chen, Y. Zhao, First-principles calculations on interface structure and fracture characteristic of TiC/TiZrC nano-multilayer film based on virtual crystal approximation. J. Alloy. Compd. 755, 211–223 (2018)

    Article  Google Scholar 

  42. Y. Li, J. Zhang, W. Wan, Y. Zhang, Y. Nie, J. Zhang, Y. Hao, Alloy disorder scattering limited mobility of two-dimensional electron gas in the quaternary AlInGaN/GaN heterojunctions. Physica E E 67, 77–83 (2015)

    Article  ADS  Google Scholar 

  43. L. Bian, F.-Q. Dong, M.-X. Song, H.-L. Dong, W.-M. Li, T. Duan, J.-B. Xu, X.-Y. Zhang, DFT and two-dimensional correlation analysis methods for evaluating the Pu3+–Pu4+ electronic transition of plutonium-doped zircon. J. Hazard. Mater. 294, 47–56 (2015)

    Article  Google Scholar 

  44. R. Poloni, J. Íñiguez, A. García, E. Canadell, An efficient computational method for use in structural studies of crystals with substitutional disorder. J. Phys. Condens. MatterCondens. Matter 22, 415401 (2010)

    Article  Google Scholar 

  45. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  46. M.S. José, A. Emilio, D.G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. MatterCondens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  47. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  48. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  49. M. José Luis, O. Pablo, B. Mads, T. Jeremy, S. Kurt, Simulations of quantum transport in nanoscale systems: application to atomic gold and silver wires. Nanotechnology 13, 346 (2002)

    Article  Google Scholar 

  50. K. Stokbro, J. Taylor, M. Brandbyge, P. Ordejón, TranSIESTA: a spice for molecular electronics. Ann. N. Y. Acad. Sci. 1006, 212–226 (2003)

    Article  ADS  Google Scholar 

  51. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  ADS  Google Scholar 

  52. R. Świrkowicz, M. Wierzbicki, J. Barnaś, Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B 80, 195409 (2009)

    Article  ADS  Google Scholar 

  53. D. Wu, X.-H. Cao, S.-Z. Chen, L.-M. Tang, Y.-X. Feng, K.-Q. Chen, W.-X. Zhou, Pure spin current generated in thermally driven molecular magnetic junctions: a promising mechanism for thermoelectric conversion. J. Mater. Chem. A 7, 19037–19044 (2019)

    Article  Google Scholar 

  54. J.-W. Jiang, J.-S. Wang, B. Li, A nonequilibrium Green’s function study of thermoelectric properties in single-walled carbon nanotubes. J. Appl. Phys. 109, 014326 (2011)

    Article  ADS  Google Scholar 

  55. A. Bahari, A. Jalalinejad, M. Bagheri, M. Amiri, First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV. Solid State Commun.Commun. 267, 1–5 (2017)

    Article  ADS  Google Scholar 

  56. X. Liang, F. Dai, Reduction of the Lorenz number in copper at room temperature due to strong inelastic electron scattering brought about by high-density dislocations. J. Phys. Chem. Lett. 10, 507–512 (2019)

    Article  Google Scholar 

  57. Z. Gholami, F. Khoeini, Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Sci. Rep. 11, 15320 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahdi Darvishi Gilan: conceptualization, methodology/study design, software, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Mahdi Darvishi Gilan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi Gilan, M. Thermoelectric properties of inhomogeneous BCN alloy nanotubes. Appl. Phys. A 130, 302 (2024). https://doi.org/10.1007/s00339-024-07467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07467-x

Keywords

Navigation