Skip to main content
Log in

Rheological characterization of novel physically crosslinked terpolymeric hydrogels at different temperatures

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The main objective of this research work is to reveal the detailed and extensive rheological characterization of terpolymeric hydrogel formulations using a variety of monomers having different concentrations of acrylic acid and applying a range of temperatures. The hydrogels with the different concentrations of acrylic acid were prepared in the absence of air using three different monomers, by free radical polymerization, gradually increasing the temperature up to polymerization point, using ethyl alcohol as solvent. Different shear measurements were performed to study rheological properties, temperature dependence, and yield strength of acrylic acid pharmaceutical hydrogels. Various models were applied to analyze the rheological behavior of the gels. The acrylic acid pharmaceutical gels having physical cross links in the gel networks, exhibit remarkable temperature dependence especially with relatively higher concentration of acrylic acid at greater shear rate. Flow curves plotted at various temperatures indicate that these gels exhibit a reasonable pseudoplastic behavior. All these hydrogels require appropriate yield strength to break their network structures. The gel samples exhibit the best fit to the Modified Bingham model, which can explain the overall flow behavior of these topical gels. The rheological analysis indicates that these gels may be used as topical gels for targeted and controlled drug delivery at a specific site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alina, O., D. P. Christina, V. G. Mihaela, M. P. Laidia, and I. Lucian, 2011, Rheological study of a liposomal hydrogel based on carbapol, Roman, Biotech. Lett. 16, 47–54.

    Google Scholar 

  • Attapatu, D. D., R. P. Chhabara, and D. H. T. UhCherr, 1990, Wall effect for spheres falling at small Reynolds-number in a viscoplastic medium, J, Non-Newtonian Fluid. Mech. 38, 31–42.

    Article  Google Scholar 

  • Barners, H. A., 1999, A brief history of the yield stress, Appl. Rheol. 9, 262–266.

    Google Scholar 

  • Bird, R. B., R. C. Armstrong, and O. Hassager, Dynamics of polymer liquids, 2nd Ed. Wiley, New York (1987).

    Google Scholar 

  • Boss, G. W., J. J. L. Jacobs, S. R. van Tomme, T. F. J. Veldhuis, C. F. van Nostrum, W. D. Otter, and E. E. Hennik, 2004, In situ cross linked biodegradable hydrogels loaded with 1L -2 are effective tools for local 1L-2 therapy, Eur. J. Phar. Sci. 21, 561–567.

    Article  Google Scholar 

  • Chang, J. Y., Y. K. Oh, H. G. Choi, Y. B. Kim, and C. K. Kim, 2002, Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions, Int. J. Pharm. 241, 155–163.

    Article  CAS  Google Scholar 

  • Chatterjee, S. and H. B. Bohidar, 2006, Effect of salt and temperature on viscoelasticity of gelatin hydrogels, J. Surface Sci. Technol. 22, 1–13.

    CAS  Google Scholar 

  • Chen, T. H., H. D. Embree, E. M. Brown, M. M. Taylor, and G. F. Payne, 2003, Enzyme-catalyzed gel formulation of gelatin and chitosan: Potential for in situ applications, Biomaterials. 24, 2831–2847.

    Article  CAS  Google Scholar 

  • Dodov, M. G., E. F. Kumbaradzi, K. Goracinova, S. Calis, M. Simonoska, and A. A. Hincal, 2003, 5-Fluorouracil in topical liposomal gels for anticancer treatment-formation and evaluation, Acta. Pharm. 53, 241–250.

    Google Scholar 

  • Drury, J. L. and D. J. Mooney, 2003, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials. 24, 4337–4351.

    Article  CAS  Google Scholar 

  • Fergusen, J. and Z. Kemblowski, Applied fluid rheology, Elsevier Applied Science, London and New York (1992).

    Google Scholar 

  • Guan, L., H. Xu, and D. Huang, 2010, The effect of ions on thermal behaviors of poly (acrylic acid)/water mixtures, Polym. (Korea) 34, 386–389.

    Google Scholar 

  • Hatefi, A. and B. Amsden, 2002, Biodegradable injectable in situ formatting drug delivery systems, J. Control. Release. 80, 9–28.

    Article  CAS  Google Scholar 

  • Hennik, W. E. and C. F. van Nostrum, 2002, Novel cross linking methods to design hydrogels, Adv. Drug Deliver 54, 13–36.

    Article  Google Scholar 

  • Islam, M. T., N. R. Hornido, S, Ciotti, and C, Ackermann, 2004, Rheological characterization of topical carbomer gels neutralized to different pH, Pharm. Research. 21, 1192–1199.

    Article  CAS  Google Scholar 

  • Jeong, B., S.W. Kim, and Y. H. Bae, 2002, Thermo-sensitive solgel reversible hydrogels, Adv. Drug Deliver 54, 37–51.

    Article  CAS  Google Scholar 

  • Keiweg, S. L., A. R. Geonnotti, and D. F. Katz, 2004, Gravityinduced coating films of vaginal gel formulations: in vitro experimental analysis, J. Pharm. Sci. 93, 2941–2952.

    Article  Google Scholar 

  • Khutoryanskiy, V. V., A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, 2004, pH effects in complex formation and blending of poly (acrylic acid) with poly (ethylene oxide), Langmuir 20, 3785–3790.

    Article  CAS  Google Scholar 

  • Kim, J. Y., J. Y. Song, E. J. Lee, and S. K. Park, 2003, Rheological properties and microstructures of carbopol gel nerwork system, Colloid Polym. Sci. 281, 614–623.

    Article  CAS  Google Scholar 

  • Larson, R. J., The structure and rheology of complex fluids, oxford University Press, New York (1999).

    Google Scholar 

  • Levy, M. C. and M. C. Andry, 1991, Mixed-walled microcapsules made of cross linked proteins and poly sacchrides-Preparation and properties, J. Microencapsule. 8, 335–347.

    Article  CAS  Google Scholar 

  • Li, S. M. and M. Vert, 2003, Synthesis, characterization and stereocomplex-induced gelation of block copolymers prepared by ring opening polymerization of L (D) -lactide in the presence of poly (ethylene glycol), Macromolecules 36, 8008–8014.

    Article  CAS  Google Scholar 

  • Nae, H. N. and W. W. Reichert, 1992, Rheological properties of lightly cross linked carboxy copolymers in aqueous solutions, Rheol. Acta 31, 351–361.

    Article  CAS  Google Scholar 

  • Nguyen, Q. D. and D. V. Boger, 1983, Yield stress measurement for concentrated suspensions, J. Rheol. 27, 321–349.

    Article  Google Scholar 

  • Okay, O. and C. Gurun, 1992, Synthesis and formation mechanism of porous 2-hydroxyethyl methacrylate ethylene-glycoldimethacrylate copolymer beads, J. Appl. Polym. Sci. 46, 401–4110.

    Article  CAS  Google Scholar 

  • Owen, D. H., J. J. Peters, and D. F. Katz, 2001, Comparison of the rheological properties of Advantage-S and Replens, Contraception 64, 393–396.

    Article  CAS  Google Scholar 

  • Ramirez, A., M. J. Fresno, M. M. Jimenenz, and E. Selles, 1999, Rheological study of Carbopoly (R) Ultrez (TM) 10 hydroalcoholic gels, I: Flow and thixotropic behavior as a function of pH and polymer concentration, Pharmazei. 54, 444–447.

    CAS  Google Scholar 

  • Rudraraju, V. S. and C. M. Wyandt, 2005, Rheology of microcrystalline cellulose and sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part II. Int. J. Pharm. 292, 63–73.

    Article  CAS  Google Scholar 

  • Tamburic, S. and D. Q. M. Craig, 1996, The effects of aging on the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems, Pharm. Res. 13, 279–283.

    Article  CAS  Google Scholar 

  • Thor Geirs Dottier, T. O., A. L. Kjoniksen, K. D. Knudsen, T. Kristmunds Dottier, and B. Nystrom, 2005, Viscoelastic and structural properties of pharmaceutical hydrogels containing monocaprin, Europ. J. Pharm. Biopharm. 59, 333–392.

    Article  Google Scholar 

  • Tomme, S. R. V., M. J. V. Steenbergen, S. C. D. Smedth, C. F. V. Nostrum, and W. E. Hennik, 2005, Self-gelling hydrogels based on opposite charged dextrin microspheres, Biomaterials. 26, 2129–2135.

    Article  Google Scholar 

  • Vyanahare, N. and J. Kohn, 1994, Photocrosslinked hydrogels based on copolymers of poly (ethylene glycol) and lysine, J. Polym. Sci: Part A Polym. Chem. 32, 1271–1281.

    Article  Google Scholar 

  • Yahia, A. and K. H. Khayat, 2001, Analytical models for estimating yield stress of high-performance pseudo plastic grout, Cement Concrete Research. 31, 731–738.

    Article  CAS  Google Scholar 

  • Zafar, Z. I., M.A. Malana, H. Pervez, M. A. Shad, and K. Momina, 2008, Synthesis and swelling kinetics of a cross linked pH-sensitive ternary co-polymer gel system, Polym. (Korea) 32, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubab Zohra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malana, M.A., Zohra, R. & Khan, M.S. Rheological characterization of novel physically crosslinked terpolymeric hydrogels at different temperatures. Korea-Aust. Rheol. J. 24, 155–162 (2012). https://doi.org/10.1007/s13367-012-0019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-012-0019-9

Keywords

Navigation