Skip to main content
Log in

Rheological properties and microstructures of Carbopol gel network system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

Carbopol gel systems have been studied using steady, oscillatory rheology, and cryoscanning electron microscopy (cryo-SEM) analysis in order to elucidate the nature of the different microstructures of the gel in relation to polymer concentration as well as triethanolamine (TEA) content. The effect of changing the concentration of Carbopol (0.1–4 wt%) for 0, 1, and 10 wt% TEA has been investigated. Cryo-SEM revealed that honeycomb structures were observed in the gel system depending on the amount of TEA and Carbopol while the irregular fibrous three dimensional gel network systems were seen at the lower level of polymer content even in the high concentration of TEA. In addition to that, as the amount of polymer was increased, strings of fibrous network became thicker and of honeycomb-like structure. Shape of storage modulus-shear stress curve in the dynamical rheometric study was significantly changed as a result of variation in the microstructures while frequency sweep curve and yield values obtained from the model fitting in the steady rheological measurements couldn't reflect the structural difference of Carbopol gels. Two distinct relaxation phenomena were appeared with increase in polymer concentration as well as TEA concentration. Temperature dependence of the stress sweep experiment was measured and shown that the effect of temperature (1–80 °C) on the shape of the curve was the similar trend with that of TEA and polymer concentrations, although the temperature dependency on the increment was much weaker than TEA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B.
Fig. 2A,B.
Fig. 3.
Fig. 4A–C.
Fig. 5A–C.
Fig. 6A–C.
Fig. 7.
Fig. 8A,B.

Similar content being viewed by others

References

  1. David LS (1973) Cosmet Perfum 88(3):51

    CAS  Google Scholar 

  2. Bremecker KD, Koch B, Kranse W, Neuenorth L (1992) Pharm Ind 54:182

  3. Hariharaputhiran M, Subramanian RS, Campbell GA, Chhabra RP (1998) J Non-Newtonian Fluid Mech 79(1):87

    Article  CAS  Google Scholar 

  4. Sjöberg M, Bergström L, Larsson A, Sjöström E (1999) Colloids Surf 159:197

  5. Gutirrez CA, Moreno R (2000) J Mater Sci 35:5867

    Article  Google Scholar 

  6. Choulis N (1975) J Pharm Sci 64(6):1033

    Article  CAS  PubMed  Google Scholar 

  7. Mortazavi AS, Smart JD (1994) J Pharm Pharmacol 46:86

    Article  CAS  PubMed  Google Scholar 

  8. Muramatsu M, Kanada K, Nishida A, Ouchi K, Saito N, Yoshida M, Shimoaka A, Ozeki T, Yuasa H, Kanaya Y (2000) Int J Pharm 199:77

    Article  CAS  PubMed  Google Scholar 

  9. Ozeki T, Yuasa H, Kanaya Y (2000) J Control Release 63:287

    Article  CAS  PubMed  Google Scholar 

  10. Carnali JO, Naser MS (1992) Colloid Polym Sci 270:183

    Article  CAS  Google Scholar 

  11. Kiser PF, Wilson GW, Needham D (1998) Nature 394:459

    Article  CAS  PubMed  Google Scholar 

  12. Antonietti M, Bremser W, Schmidt M (1990) Macromolecules 23:3796

    Article  CAS  Google Scholar 

  13. Berli CLA, Quemada D (2000) Langmuir 16:7968

    Article  CAS  Google Scholar 

  14. Clarke MT (1993) In: Laba D (ed) Rheological properties of cosmetics and toiletries. Marcel Dekker, New York, p 55

  15. Tamburic S, Craig DQM (1997) Eur J Pharm Biopharm 44:159

    Article  CAS  Google Scholar 

  16. Hagerström H, Paulsson M, Edsman K (2000) Eur J Pharm Sci 9:301

    Article  PubMed  Google Scholar 

  17. Riley RG, Smart JD, Tsibouklis J, Dettmar PW, Hampson F, Davis JA, Kelly G, Wilber WR (2001) Int J Pharm 217:87

    Article  CAS  PubMed  Google Scholar 

  18. Cho YI, Hartnett JP, Lee WY (1984) J Non-Newtonian Fluid Mech 15:61

    Article  CAS  Google Scholar 

  19. Ünlü N, Ludwig A, van Ooteghem M, Hincal AA (1991) Pharmazie 46:784

    PubMed  Google Scholar 

  20. Barry BW, Meyer MC (1979) Int J Pharm 2:1

    Article  CAS  Google Scholar 

  21. Barry BW, Meyer MC (1979) Int J Pharm 2:27

    Article  CAS  Google Scholar 

  22. Dolz M, Herrez M, González M, Díez O, Delegido J, Hernández MJ (1998) Pharmazie 53:2

    Google Scholar 

  23. Testa B, Etter J-C (1973) Pharm Acta Helv 6(7):378

    Google Scholar 

  24. Atapattu DD, Chhabra RP, Uhlherr PHT (1990) J Non-Newtonian Fluid Mech 38:31

    Article  CAS  Google Scholar 

  25. Bremecker KD (1989) Pharm Ind 51(2):199

    CAS  Google Scholar 

  26. Testa B (1970) Thesis, University of Lausanne

  27. Martin EW (1965) Remington's pharmaceutical sciences, 13th edn. MACK Publishing, Pennsylvania

  28. Saito S, Taniguchi T (1973) J Am Oil Chem Soc 50:276

    Article  CAS  Google Scholar 

  29. Tamburic S, Craig DQM (1995) J Control Rel 37:59

    Article  CAS  Google Scholar 

  30. Raghavan SR, Khan SA (1995) J Rheol 39:1311

  31. Nguyen QD, Boger DV (1985) J Rheol 29:335

  32. Nguyen QD, Boger DV (1983) J Rheol 27:32

  33. Cross MM (1965) J Colloid Sci 20:417

    Article  CAS  Google Scholar 

  34. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

  35. Steeneken PAM (1989) Carbohydr Polym 11:23

  36. Imae T (1994) In: Herb CA, Prud'homme KR (eds) Structure and flow in surfactant solutions. ACS Symposium Series 578. American Chemical Society, Washington, DC, p 140

  37. Ketz RJ Jr, Prud'homme RK, Graessley WW (1988) Rheol Acta 27:531

  38. Dittmar CA (1957) Drug Cosmet Ind 81:447

    Google Scholar 

  39. Lang W (1972) Drug Cosmet Ind 52:54

    Google Scholar 

  40. Lang W (1972) Drug Cosmet Ind 52:127

    Google Scholar 

  41. Fischer WH, Bauer WH, Wiberley SE (1961) Trans Soc Rheol 5:221

    Article  CAS  Google Scholar 

  42. Taylor NW, Bagley EB (1975) J Polym Sci Polym Phys Ed 13:1133

    Article  CAS  Google Scholar 

  43. Ferry JD (1970) Viscoelastic properties of polymers, 2nd edn. Wiley, New York

Download references

Acknowledgment.

We are grateful to Yeo-Kyeong Yoon, Director of LG Household & Personal Care Research Park, for his kind permission to publish this work. We also thank Dr. Giyoong Tae for helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Yun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Song, JY., Lee, EJ. et al. Rheological properties and microstructures of Carbopol gel network system. Colloid Polym Sci 281, 614–623 (2003). https://doi.org/10.1007/s00396-002-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-002-0808-7

Keywords.

Navigation