Skip to main content
Log in

A GCase Chaperone Improves Motor Function in a Mouse Model of Synucleinopathy

  • Original Article
  • Published:
Neurotherapeutics

Abstract

Mutation of the lysosomal hydrolase acid-β-glucosidase (GCase), which leads to reduced GCase activity, is one of the most frequent genetic risk factors for Parkinson’s disease (PD) and promotes α-synuclein accumulation in the brain, a hallmark of PD and other synucleinopathies. Whether targeting GCase pharmacologically is a valid therapeutic strategy for sporadic PD in the absence of GCase mutation is unknown. We have investigated whether increasing the stability, trafficking, and activity of wild-type GCase could be beneficial in synucleinopathies by administering the pharmacological chaperone AT2101 (afegostat-tartrate, isofagomine) to mice that overexpress human wild-type α-synuclein (Thy1-aSyn mice). AT2101 administered orally for 4 months to Thy1-aSyn mice improved motor and nonmotor function, abolished microglial inflammatory response in the substantia nigra, reduced α-synuclein immunoreactivity in nigral dopaminergic neurons, and reduced the number of small α-synuclein aggregates, while increasing the number of large α-synuclein aggregates. These data support the further investigation of pharmacological chaperones that target GCase as a therapeutic approach for sporadic PD and other synucleinopathies, even in the absence of glucocerebrosidase mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hardy J. Genetic analysis of pathways to Parkinson disease. Neuron 2010;68:201-216.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Pankratz N, Nichols WC, Elsaesser VE, P et al. Alpha-synuclein and familial Parkinson's disease. Mov Disord 2009;24:1125–1131.

  3. Trojanowski JQ, Lee VM. Parkinson's disease and related alpha-synucleinopathies are brain amyloidoses. Ann N Y Acad Sci 2003;991:107–110.

    Article  PubMed  CAS  Google Scholar 

  4. Bultron G, Kacena K, Pearson D, et al. The risk of Parkinson's disease in type 1 Gaucher disease. J Inherit Metab Dis 2010;33:167–173.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 2009;361:1651–1661.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Cookson MR. A feedforward loop links Gaucher and Parkinson's diseases? Cell 2011;146:9–11.

    Article  PubMed  CAS  Google Scholar 

  7. Dawson TM, Dawson VL. A lysosomal lair for a pathogenic protein pair. Sci Transl Med 2011;3:91ps28.

  8. Mazzulli JR, Xu YH, Sun Y, et al. Gaucher Disease Glucocerebrosidase and alpha-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies. Cell 2011;146:37–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yap TL, Velayati A, Sidransky E, Lee JC. Membrane-bound alpha-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab 2013;108:56–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Yap TL, Gruschus JM, Velayati A, et al. Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 2012;286:28080–28088.

    Article  Google Scholar 

  11. Gegg ME, Burke D, Heales SJ, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 2012;72:455–463.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Cullen V, Sardi SP, Ng J, et al. Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing. Ann Neurol 2011;69:940–953.

    Article  PubMed  CAS  Google Scholar 

  13. Sardi SP, Clarke J, Kinnecom C, et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci U S A 2011;108:12101–12106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Schapira AH, Gegg ME. Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Proc Natl Acad Sci U S A 2013;110:3214–3215.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Valenzano KJ, Khanna R, Powe AC, et al. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Develop Technol 2011;9:213–235.

    Article  CAS  Google Scholar 

  16. Khanna R, Benjamin ER, Pellegrino L, et al. The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. FEBS J 2010;277:1618–1638.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Steet RA, Chung S, Wustman B, Powe A, Do H, Kornfeld SA. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci U S A 2006;103:13813–13818.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005;14:2387–2398.

    Article  PubMed  CAS  Google Scholar 

  19. Sawkar AR, Schmitz M, Zimmer KP, et al. Chemical chaperones and permissive temperatures alter localization of Gaucher disease associated glucocerebrosidase variants. ACS Chem Biol 2006;1:235–251.

    Article  PubMed  CAS  Google Scholar 

  20. Fleming SM, Salcedo J, Fernagut PO, et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 2004;24:9434–9440.

    Article  PubMed  CAS  Google Scholar 

  21. Rockenstein E, Mallory M, Hashimoto M, et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002;68:568–578.

    Article  PubMed  CAS  Google Scholar 

  22. Lam HA, Wu N, Cely I, et al. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human alpha-synuclein. J Neurosci Res 2011;89:1091–1102.

    Article  PubMed  CAS  Google Scholar 

  23. Chesselet MF, Richter F. Modelling of Parkinson's disease in mice. Lancet Neurol 2011;10:1108–1118.

    Article  PubMed  Google Scholar 

  24. Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR. A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics. 2012;9:297–314.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF. Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 2008;28:247–256.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fernagut PO, Hutson CB, Fleming SM, et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 2007;61:991–1001.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Fleming SM, Mulligan CK, Richter F, et al. A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Mol Cell Neurosci 2011;46:597–606.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Richter F, Gao F, Medvedeva V, et al. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014;69C:263–275.

    Article  Google Scholar 

  29. Lu XH, Fleming SM, Meurers B, et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 2009;29:1962–1976.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Watson MB, Richter F, Lee SK, et al. Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 2012;237:318–334.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Efron B, Tibshirani R. Statistical data analysis in the computer age. Science 1991;253:390–395.

    Article  PubMed  CAS  Google Scholar 

  32. Watson JB, Hatami A, David H, et al. Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 2009;159:501–513.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Wu N, Joshi PR, Cepeda C, Masliah E, Levine MS. Alpha-synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway. J Neurosci Res 2010;88:1764–1776.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Academic Press, San Diego, CA, 2001.

    Google Scholar 

  35. Batchelor PE, Liberatore GT, Wong JY, et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999;19:1708–1716.

    PubMed  CAS  Google Scholar 

  36. Sardi SP, Clarke J, Viel C, et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci U S A 2013;110:3537–3542.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sun Y, Liou B, Xu YH, et al. Ex vivo and in vivo effects of isofagomine on acid beta-glucosidase variants and substrate levels in Gaucher disease. J Biol Chem 2011;287:4275–4287.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun Y, Ran H, Liou B, et al. Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse. PLoS One 2011;6:e19037.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Fleming S, Chesselet MF. Modeling non-motor symptoms of Parkinson’s disease in genetic mouse models. In: Groenewegen HJ, Voorn P, Berendse HW, Mulder AB, Cools AR, (eds) Basal ganglia IX. Springer, New York, 2009, pp. 483–492.

    Chapter  Google Scholar 

  40. Lee KW, Chen W, Junn E, et al. Enhanced phosphatase activity attenuates alpha-Synucleinopathy in a mouse model. J Neurosci 2011;31:6963–6971.

    Article  PubMed  CAS  Google Scholar 

  41. Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 2007;27:1405–1410.

    Article  PubMed  CAS  Google Scholar 

  42. Tompkins MM, Hill WD. Contribution of somal Lewy bodies to neuronal death. Brain Res 1997;775:24–29.

    Article  PubMed  CAS  Google Scholar 

  43. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol 2010;120:131–143.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008;118:777–788.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Amicus Therapeutics, Inc., the UCLA Morris K. Udall Parkinson Disease Research Center of Excellence (PHS grant NS-P50 NS38367), and gifts to the Center for the Study of Parkinson’s Disease at UCLA. We thank Dr. Alan Garfinkel, UCLA, for help with statistical analyses, and Fabrice Cordelières, CNRS France, for providing the protocol on confocal tile scan imaging. Confocal laser scanning microscopy was performed at the California NanoSystems Institute (CNSI) Advanced Light Microscopy/Spectroscopy Core Laboratory at UCLA, supported by funding from a NSF Major Research Instrumentation grant (CHE-0722519). MFC has received honoraria and travel reimbursement from the Michael J. Fox Foundation. LP, BR, RK, JF, DJL, BAW, and SWC are employees of Amicus Therapeutics. BW is the author of 2 patents that are related to this work. The authors have no additional financial interests.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Françoise Chesselet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, F., Fleming, S.M., Watson, M. et al. A GCase Chaperone Improves Motor Function in a Mouse Model of Synucleinopathy. Neurotherapeutics 11, 840–856 (2014). https://doi.org/10.1007/s13311-014-0294-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0294-x

Keywords

Navigation