Skip to main content
Log in

Making Logarithms Accessible – Operational and Structural Basic Models for Logarithms

Zugänge zum Logarithmus – Operationale und strukturelle Grundvorstellungen zum Logarithmus

  • Originalarbeit/Original Article
  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Abstract

Logarithms have a reputation for being difficult and inaccessible. As an analysis of their historical, mathematical and educational background suggests, this problem might be due to the way in which logarithms are interpreted and explained in textbooks: as the inverse of exponents. If this conclusion is right, additional interpretations of logarithms are required.

By combining the theoretical construct of ‘Grundvorstellungen’ (translated as ‘basic models’) and the distinction between operational and structural conceptions, I identify and elaborate four interpretations of logarithms: (i) the basic model of ‘multiplicative measuring’, (ii) the basic model of ‘counting the number of digits’, (iii) the basic model of ‘decreasing the hierarchy level’, and (iv) the basic model of ‘inverse exponent’. Three models (i–iii) reflect operational conceptions and interpret logarithms in contexts familiar to students. In combination with (iv), a structural basic model, this paper argues on a theoretical level that they could help to make logarithms accessible and understandable to students. Following the tradition of ‘Stoffdidaktik’ (‘subject-matter didactics’), the study thus aims to unpack some of the content knowledge required for the teaching of logarithms.

Zusammenfassung

Der Logarithmus gilt als schwierig und unverständlich. Wie eine historische, mathematische und didaktische Sachanalyse zeigt, könnte dieses Problem darauf zurückgehen, dass der Logarithmus in Schulbüchern primär als inverser Exponent eingeführt und interpretiert wird. Wenn diese Diagnose zutrifft, sind weitere Zugänge zum Logarithmus gefragt.

Der vorliegende Beitrag entwickelt und diskutiert – unter Bezugnahme auf das theoretische Konstrukt der Grundvorstellungen sowie auf die Unterscheidung zwischen operationalen und strukturellen Auffassungen mathematischer Begriffe – vier Grundvorstellungen zum Logarithmus: (i) die Grundvorstellung des ‚multiplikativen Einpassens‘, (ii) die Grundvorstellung des ‚Bestimmens der Stellenzahl‘, (iii) die Grundvorstellung des ‚Herabsetzens der Hierarchiestufe‘, sowie (iv) die Grundvorstellung des ‚inversen Exponenten‘. Drei Interpretationen (i bis iii) deuten den Logarithmus operational und darüber hinaus in einem Erfahrungsbereich, der den Lernenden vertraut ist. Zusammen mit (iv), einer strukturellen Grundvorstellung, könnten sie – so wird hier aus theoretischer Sicht argumentiert – den Logarithmus für Lernende zugänglicher und verständlicher machen. In der Tradition der Stoffdidaktik stehend, bereitet dieser Beitrag mathematisches Professionswissen für das Unterrichten des Logarithmus auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For a comprehensive overview of ‘Grundvorstellungen’ identified so far for lower secondary concepts, see Jordan (2006, pp. 148–154).

  2. In this paper, the term “context” is not limited to real-life settings, but is considered more broadly in the sense of meaningful settings where particular conceptualizations of a mathematical concept can be activated (e.g. Leuders et al. 2011). Moreover, the term “familiar” is used to refer to students’ individual experiences and underlying activities (e.g. comparing, counting, etc.). In the German tradition, the corresponding construct is ‘subjektiver Erfahrungsbereich’ (Bauersfeld 1983; vom Hofe 1998), or ‘subjective experiential domain.’

  3. As early as 1850, a German textbook proposes “Grundvorstellungen zum Logarithmus” (basic models for logarithms), with the aim of explaining logarithms in a more “comprehensible and thorough” manner (Matzka 1850). However, he interpreted them as “[…] representatives, chargés d’affaires, authorised agents […]” (ibid., p. 10, translated by C. W.), so one can hardly consider these as basic models in the modern sense.

  4. Contrary to the English-speaking tradition where the obelus sign “\(\div\)” is used as a division symbol, German-speaking countries use the colon “:” to indicate the division operation (also used for ratios).

  5. To do and write down division problems like \(b\div a\) with long division, English-speaking countries use the symbol . Read as “\(a\) is divided into \(b\),” the symbol conveys the quotative interpretation of division (cf. Sect. 2.1.4). In contrast, this symbol is not known in German-speaking countries where the division symbol \(b:a\) is also used for writing down long divisions.

  6. If \(b<a\), the equivalence \(\log_{a}b=1/\log_{b}a\) can be used.

  7. This interpretation can be further generalised to arguments written in any non-decimal base, by changing the base of the logarithm. For example, the base 2 logarithm of a number \(b\) finds the number of digits minus 1 in the binary expression of \(b\).

References

  • Andelfinger, B. (1985). Exponentielle und logarithmische Probleme. In B. Andelfinger (Ed.), Didaktischer Informationsdienst Mathematik (pp. 227–231). Soest: Landesinstitut für Schule und Weiterbildung.

    Google Scholar 

  • Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und -lehrens. In H. Bauersfeld et al. (Eds.), Analysen zum Unterrichtshandeln (pp. 1–56). Köln: Aulis Deubner.

  • Bennhardt, D. (2009). Der Logarithmus: tradierte Fachbegriffe oder sinnstiftende Kreatitivität? Praxis der Mathematik in der Schule, 51(10), 44–45.

    Google Scholar 

  • Berezovski, T. (2004). An inquiry into high school students’ understanding of logarithms. Burnaby: Simon Fraser University. Unpublished master thesis.

    Google Scholar 

  • Berezovski, T. (2007). Exposing pre-service secondary mathematics teachers’ knowledge through new research designed methodology. Burnaby: Simon Fraser University. Unpublished dissertation thesis.

    Google Scholar 

  • Blum, W. (2002). On the role of ‘Grundvorstellungen’ for reality-related proofs – examples and reflections. In M. A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society for Research in Mathematics Education. Pisa: Universitá di Pisa.

    Google Scholar 

  • Brennan, M. (2007). The role of language in the demise of logs. The Irish Math Teacher Association Newsletter, 107, 44–51.

    Google Scholar 

  • Brown, M. (1981). Number operations. In K. Hart (Ed.), Children’s understanding of Mathematics: 11–16 (pp. 23–47). London: Murray.

    Google Scholar 

  • Cajori, F. (1913). History of the exponential and logarithmic concepts. The American Mathematical Monthly, 20(1), 5–14. 20 (2), 35–47, 20 (4), 107–117.

    Article  Google Scholar 

  • Cajori, F. (1952). A history of mathematical notation. vol. 2. Chicago: Open Court.

    Google Scholar 

  • Carter, J. A. (2012). Algebra 2. Columbus, OH: Glencoe & McGraw-Hill.

    Google Scholar 

  • Chua, B., & Wood, E. (2005). Working with logarithms: students’ misconceptions and errors. The Mathematics Educator, 8(2), 53–70.

    Google Scholar 

  • Clark, K. (2006). Investigating teachers’ experiences with the history of logarithms: a collection of five case studies. Maryland: University of Maryland. Unpublished dissertation.

    Google Scholar 

  • Deller, H., Gebauer, P., & Zinn, J. (2000). Algebra 2 – Aufgaben. Zürich: Orell Füssli.

    Google Scholar 

  • van Dooren, W., de Bock, D., Janssens, D., & Verschaffel, L. (2008). The linear imperative. An inventory and conceptual analysis of students’ overuse of linearity. Journal for Research in Mathematics Education, 39(3), 311–342.

    Google Scholar 

  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht: Kluwer.

    Google Scholar 

  • Dubinsky, E., & McDonald, M. A. (2002). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton et al. (Ed.), The teaching and learning of mathematics at university level (pp. 275–282). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Espedal, B. (2015). En meningsfull tilnærming til logaritmer – En designstudie om introduksjon av logaritmer gjennom repetert divisjon. Agder: University of Agder. Unpublished master thesis.

    Google Scholar 

  • Euler, L. (1822). Elements of algebra. London: Longman, Orme. Original German edition: 1765.

    Google Scholar 

  • Fermsjö, R. (2014). Exploring logarithms using number lines. In S. Oesterle, C. Nicol, P. Liljedahl, & D. Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (vol. 6, p. 308). Vancouver: PME.

    Google Scholar 

  • Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht: Reidel.

    Google Scholar 

  • Fischbein, E. (1989). Tacit models and mathematical reasoning. For the learning of mathematics, 9(2), 9–14.

    Google Scholar 

  • Fosnot, C. T., & Dolk, M. (2001). Young mathematicians at work: Constructing multiplication and division. Portsmouth, NH: Heinemann.

    Google Scholar 

  • Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 276–295). New York: Macmillan.

    Google Scholar 

  • Gilmore, C., & Inglis, M. (2008). Process- and object-based thinking in arithmetic. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojana, & A. Sepulveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX (vol. 3, pp. 73–80). Morelia: Cinvestav-UMSNH.

    Google Scholar 

  • Goldberg, M. (2006). Computing logarithms digit-by-digit. International Journal of Mathematical Education in Science and Technology, 37(1), 109–114.

    Article  Google Scholar 

  • Gray, E. M., & Tall, D. (1994). Duality, ambiguity and flexibility: A „proceptual“ view of simple arithmetic. Journal for Research in Mathematics Education, 25(1), 116–140.

    Article  Google Scholar 

  • Griesel, H. (1971). Mengen, Zahlen, Relationen, Topologie – Die Neue Mathematik für Lehrer und Studenten, vol. 1. Hannover: Schroedel.

    Google Scholar 

  • Griesel, H., Postel, H., & Suhr, F. (2004). Elemente der Mathematik 10. Braunschweig: Schroedel.

    Google Scholar 

  • Hammack, R., & Lyons, D. (1995). A simple way to teach logarithms. The Mathematics Teacher, 88(5), 374–375.

    Google Scholar 

  • Hanrahan, V., Matthews, J., Porkess, R., & Secker, P. (2004). AS Pure Mathematics Core 1 & Core 2. London: Hodder Murrays.

    Google Scholar 

  • Hirsch, C., Fey, J., Hart, E., Schoen, H., & Watkins, A. (2008). Core-Plus Mathematics: Contemporary Mathematics in Context, Course 2. New York, NY: Glencoe/McGrawHill.

    Google Scholar 

  • vom Hofe, R. (1998). On the generation of basic ideas and individual images: Normative, descriptive and constructive aspects. In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics Education as a Research Domain: A Search for Identity (pp. 317–331). London: Kluwer.

    Google Scholar 

  • vom Hofe, R., & Blum, W. (2016). “Grundvorstellungen” as a Category of Subject-Matter Didactics. Journal für Mathematik-Didaktik, doi: 10.1007/s13138-016-0107-3 (in this themed issue).

  • vom Hofe, R., Kleine, M., Blum, W., & Pekrun, R. (2006). The effect of mental models („Grundvorstellungen“) for the development of mathematical competencies. In M. Bosch (Ed.), Proceedings oft he Fourth Congress of the European Society for Research in Mathematics Education (pp. 142–151). Universitat Ramon Llull.

  • Holliday, B., Cuevas, G., Moore-Harris, B., Carter, J., Marks, D., Casey, R., Day, R., & Hayek, L. (2005). Glencoe Mathematics: Algebra 2, California edition. New York, NY: Glencoe/McGraw-Hill.

    Google Scholar 

  • Hurwitz, M. (1999). We have liftoff! Introducing the logarithmic function. The Mathematics Teacher, 92(4), 344–345.

    Google Scholar 

  • Jordan, A. (2006). Mathematische Bildung von Schülern am Ende der Sekundarstufe 1 – Analysen und empirische Untersuchungen. Hildesheim: Franzbecker.

    Google Scholar 

  • Katz, V. (1997). Some ideas on the use of history in the teaching of mathematics. For the Learning of Mathematics, 17(1), 62–63.

    Google Scholar 

  • Kaur, B., & Boey, H. (1994). Algebraic misconceptions of first year college students. Focus on Learning Problems in Mathematics, 16(4), 43–58.

    Google Scholar 

  • Kenney, R. (2005). Students’ understanding of logarithmic function notation. In G. Lloyd, M. Wilson, J. Wilkins, & S. Behm (Eds.), Proceedings of the 27th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Roanoke, VA: PME-NA. 8 pages.

    Google Scholar 

  • Kirsch, A. (1977). Aspects of simplification in mathematics teaching. In H. Athen, & H. Kunle (Eds.), Proceedings of the third international congress on mathematical education (pp. 98–119). Karlsruhe: Zentralblatt für Didaktik der Mathematik.

    Google Scholar 

  • Kirshner, D., & Awtry, T. (2004). Visual Salience of Algebraic Transformations. Journal for Research in Mathematics Education, 35(4), 224–257.

    Article  Google Scholar 

  • Klein, F. (1932). Elementary mathematics from an advanced standpoint: Arithmetic – algebra – analysis. London: MacMillan. Original German edition: 1908.

    Google Scholar 

  • Kleine, M., Jordan, A., & Harvey, E. (2005). With the focus on ‘Grundvorstellungen’ – Part 1: a theoretical integration into current concepts. ZDM Mathematical Education, 37, 226–233.

    Article  Google Scholar 

  • Klüpfel, C. (1981). When are logarithms used? Mathematics Teacher, 74(4), 250–253.

    Google Scholar 

  • Kuypers, W., Lauter, J., & Wuttke, H. (1995). Mathematik 10. Schuljahr. Berlin: Cornelsen.

    Google Scholar 

  • Lee, F., & Heyworth, R. (1999). Errors due to misperception and the default-value model. In G. Cumming, T. Okamoto, & L. George (Eds.), Advanced research in computers and communications in education (pp. 228–231). Amsterdam: IOS Press.

    Google Scholar 

  • Leopold, D. G., & Edgar, B. (2008). Degree of Mathematics Fluency and Success in Second-Semester Introductory Chemistry. Journal of Chemical Education, 85(5), 724–731.

    Article  Google Scholar 

  • Lergenmüller, A., & Schmidt, G. (2004). Mathematik Neue Wege 10. Braunschweig: Schroedel.

    Google Scholar 

  • Leuders, T., Hußmann, S., Barzel, B., & Prediger, S. (2011). “Das macht Sinn!” – Sinnstiftung mit Kontexten und Kernideen. Praxis der Mathematik in der Schule, 37, 2–9.

    Google Scholar 

  • Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman, & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 25–50). London: Academic Press.

    Google Scholar 

  • Matzka, W. (1850). Elementarlehre von den Logarithmen. Prag: Calve’sche Buchhandlung.

    Google Scholar 

  • Mulqueeny, E. (2012). How do students acquire an understanding of logarithmic concepts? Kent: Kent State University. Unpublished dissertation thesis.

    Google Scholar 

  • Murdock, J., Kamischke, E., & Kamischke, E. (2010). Discovering advanced algebra – an investigative approach. Emeryville, CA: Key Curriculum.

    Google Scholar 

  • Neill, H., & Quadling, D. (2000). Pure Mathematics 1 & 2. Cambridge: Cambridge University Press.

    Google Scholar 

  • Oehl, W. (1962). Der Rechenunterricht in der Grundschule. Hannover: Schroedel.

    Google Scholar 

  • Ostler, E. (2013). Exploring logarithms with a ruler. Mathematics Teacher, 106(9), 669–673.

    Google Scholar 

  • Padberg, F., & Benz, C. (2011). Didaktik der Arithmetik. Heidelberg: Springer.

    Google Scholar 

  • Panagiotou, E. (2011). Using history to teach mathematics: the case of logarithms. Science Education, 20(1), 1–35.

    Article  Google Scholar 

  • DePierro, E., & Garafalo, F. (2008). Helping students make sense of logarithms and logarithmic relations. Journal of Chemical Education, 85(9), 1226–1228.

    Article  Google Scholar 

  • Prediger, S. (2009). Verstehen durch Vorstellen. In T. Leuders, L. Hefendehl-Hebeker, & H.-G. Weigand (Eds.), Mathemagische Momente (pp. 166–175). Berlin: Cornelsen.

    Google Scholar 

  • Radatz, H., Schipper, W., Dröge, R., & Ebeling, A. (1998). Handbuch für den Mathematikunterricht: 2. Schuljahr. Hannover: Schroedel.

    Google Scholar 

  • Rahn, J., & Berndes, B. (1994). Logarithms to Explore Power and Exponential Functions. The Mathematics Teacher, 87(3), 161–170.

    Google Scholar 

  • Sajka, M. (2003). A secondary school student’s understanding of the concept of function – a case study. Educational Studies in Mathematics, 53(3), 229–254.

    Article  Google Scholar 

  • Sandifer, E. (2007). Finding logarithms by hand. In E. Sandifer (Ed.), How Euler did it (pp. 121–126). Washington D.C.: The Mathematical Association of America.

    Google Scholar 

  • Seebeck, C., & Hummel, P. (1959). Logarithmic and exponential functions – a direct approach. The Mathematics Teacher, 52(6), 439–443.

    Google Scholar 

  • Senk, S., & Thompson, D. (2006). Strategies used by second-year algebra students to solve problems. Journal for Research in Mathematics Education, 37(2), 116–128.

    Google Scholar 

  • Selter, C., Prediger, S., Nührenbörger, M., & Hußmann, S. (2012). Taking away and determining the difference—a longitudinal perspective on two models of subtraction and the inverse relation to addition. Educational Studies in Mathematics, 79(3), 389–408.

    Article  Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Skemp, R. (1978). Relational understanding and instrumental understanding. Arithmetic Teacher, 26, 9–15.

    Google Scholar 

  • Smith, E., & Confrey, J. (1994). Multiplicative structures and the development of logarithms: what was lost by the invention of functions? In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 331–360). Albany, NY: State University of New York Press.

    Google Scholar 

  • Stoll, C. (2006). When slide rules ruled. Scientific American, 5, 80–87.

    Article  Google Scholar 

  • Stölting, P. (2008). Die Entwicklung funktionalen Denkens in der Sekundarstufe 1 – vergleichende Analysen und empirische Studien zum Mathematikunterricht in Deutschland und Frankreich. Regensburg: Universität Regensburg. Unpublished dissertation thesis.

    Google Scholar 

  • Sträßer, R. (2014). Stoffdidaktik in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 566–570). Dordrecht: Springer.

    Google Scholar 

  • Tall, D., & Vinner, S. (1991). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151–169.

    Article  Google Scholar 

  • Toumasis, C. (1993). Teaching logarithms via their history. School Science and Mathematics, 93(8), 428–434.

    Article  Google Scholar 

  • Usiskin, Z. (1991). Building mathematics curricula with applications and modelling. In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 30–45). Chichester: Horwood.

    Google Scholar 

  • Watters, D., & Watters, J. (2006). Student understanding of pH. Biochemistry and Molecular Biology Education, 34(4), 278–284.

    Article  Google Scholar 

  • Webb, D., van der Kooij, H., & Geist, M. (2011). Design research in the Netherlands: Introducing logarithms using realistic mathematics education. Journal of Mathematics Education at Teachers College, 2, 47–52.

    Google Scholar 

  • Weber, C. (2013). Grundvorstellungen zum Logarithmus – Bausteine für einen verständlichen Unterricht. In H. Allmendinger, K. Lengnink, A. Vohns, & G. Wickel (Eds.), Mathematik verständlich unterrichten (pp. 79–98). Wiesbaden: Spektrum.

    Chapter  Google Scholar 

  • Weber, K. (2002). Developing students’ understanding of exponents and logarithms. In D. Mewborn, P. Sztajn, D. White, H. Wiegel, R. Bryant, & K. Nooney (Eds.), Proceedings of the twenty-fourth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 1019–1027). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

    Google Scholar 

  • Williams, H. (2011). A conceptual framework for student understanding of logarithms. Brigham Young University. Unpublished master thesis.

  • Wittmann, E., & Müller, G. (2004). Das Zahlenbuch 2. Leipzig: Klett.

    Google Scholar 

  • Wood, E. (2005). Understanding logarithms. Teaching Mathematics and its Applications, 24(4), 2005.

    Article  Google Scholar 

  • Yen, R. (1999). Reflections on higher school certificate examinations: learning from their mistakes, HSC 1998. Reflections, 24(3), 3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Weber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, C. Making Logarithms Accessible – Operational and Structural Basic Models for Logarithms. J Math Didakt 37 (Suppl 1), 69–98 (2016). https://doi.org/10.1007/s13138-016-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13138-016-0104-6

Keywords

Schlüsselwörter

Mathematics Subject Classification (2010)

Navigation