Skip to main content
Log in

Branching the auxin signaling; Multiple players and diverse interactions

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In contrast to its short signaling pathway, auxin plays a wide spectrum of biological roles during plant growth and development. The nuclear auxin signaling pathway can be described in a single step; auxin/receptor-mediated ubiquitination/degradation of transcriptional repressors that affect the auxin responsive genes. However, this simple signaling step generates not only diverse but also seemingly contrary signaling outputs, such as activation/repression of gene expression and promotion/inhibition of cell growth. This diversity of the nuclear auxin signaling is likely to derive from multiple and diverse players of the signaling components. The major nuclear auxin signaling components are receptors, repressors, DNA-binding transcription factors, and co-repressors. In most land plants, each component of the auxin signaling consists of multiple isoforms with somewhat diversified structures; and thus with diverse molecular functions. The diversity of members of each signaling component is anticipated to contribute to the diverse auxin responses. This study reviews the recent results regarding the diverse molecular structures and interactions among the nuclear auxin signaling players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arase F, Nishitani H, Egusa M, Nishimoto N, Sakurai S, Sakamoto N, Kaminaka H (2012) IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS One 7:e43414.

    Article  PubMed  CAS  Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In Plant Hormones, 2nd ed, ed by Davies J, Kluwer, Dordrecht The Netherlands

    Google Scholar 

  • Berendzen KW, Weiste C, Wanke D, Kilian J, Harter K, Dröge-Laser W (2012) Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC Plant Biol 12:125

    Article  PubMed  CAS  Google Scholar 

  • Causier B, Ashworth M, Guo W, Davies B (2012a) The TOPLESS interactome: A framework for gene repression in Arabidopsis. Plant Physiol 158:423–438

    Article  PubMed  CAS  Google Scholar 

  • Causier B, Lloyd J, Stevens L, Davies B (2012b) TOPLESS corepressor interactions and their evolutionary conservation in plants. Plant Signal Behav 7:325–328

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Maharjan PM, Lee O, Fujioka S, Jang Suyoun, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2015a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  Google Scholar 

  • Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis Aux/ IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18:699–714

    Article  PubMed  CAS  Google Scholar 

  • Ganguly A, Sasayama D, Cho HT (2012) Regulation of the polarity of protein trafficking by phosphorylation. Mol Cells 33:423–430

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  PubMed  CAS  Google Scholar 

  • Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Cur Biol 21:520–525

    Article  CAS  Google Scholar 

  • Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29:2700–2714

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Cur Opin Plant Biol 10:453–460

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2012) Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions. Plant Sci 190:82–88

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Guilfoyle TJ (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152:1109–1134

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  • Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9:441–456

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777

    Article  PubMed  CAS  Google Scholar 

  • Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Deveopment 139:4180–4190

    CAS  Google Scholar 

  • Leopold AC (1955) Auxin and plant growth. University of California Press; Berkeley, CA

    Google Scholar 

  • Leyser HMO, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    Article  PubMed  CAS  Google Scholar 

  • Li H, Tiwari SB, Hagen G, Guilfoyle TJ (2011a) Identical Amino Acid Substitutions in the Repression Domain of Auxin/Indole-3-Acetic Acid Proteins Have Contrasting Effects on Auxin Signaling. Plant Physiol 155:1252–1263

    Article  PubMed  CAS  Google Scholar 

  • Li J-F, Bush J, Xiong Y, Li L, McCormack M (2011b) Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by Split Firefly Luciferase Complementation. PLoS ONE 6:e27364

    Article  PubMed  CAS  Google Scholar 

  • Lokerse AS, Weijers D (2009) Auxin enters the matrix — assembly of response machineries for specific outputs. Cur Op Plant Biol 12:520–526

    Article  CAS  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Masucci J, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin and ethyleneassociated process. Plant Physiol 106:1335–1346

    PubMed  CAS  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  PubMed  CAS  Google Scholar 

  • Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol 144:187–196

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    PubMed  CAS  Google Scholar 

  • Sauer M, Kleine-Vehn J (2011) AUXIN BINDING PROTEIN1: The outsider. Plant Cell 23:2033–2043

    Article  PubMed  CAS  Google Scholar 

  • Soh MS, Hong SH, Kim BC, Vizir I, Park DH, Choi G, Hong MY, Chung Y-Y, Furuya M, Nam HG (1999) Regulation of both light and auxin-mediated development by the Arabidopsis IAA3/SHY2 gene. J Plant Biol 42:239–246

    Article  CAS  Google Scholar 

  • Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007 re6.

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    PubMed  CAS  Google Scholar 

  • Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  PubMed  CAS  Google Scholar 

  • Timpte CS, Wilson AK, Estelle M (1992) Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188:271–278

    Article  CAS  Google Scholar 

  • Timpte C, Wilson AK, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999a) Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999b) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, den Daele HV, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Sys Biol 7:508–522

    Google Scholar 

  • Villalobos LIAC, Lee S, Oliveira CD, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/ IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    Article  Google Scholar 

  • Wang L, Kim J, Somers DE (2013) Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci USA 110:761–776

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    Article  PubMed  CAS  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383

    Article  PubMed  CAS  Google Scholar 

  • Zenser N, Dreher KA, Edwards SR, Callis J (2003) Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1. Plant J 35:285–294

    Article  PubMed  CAS  Google Scholar 

  • Zenser N, Ellsmore A, Leasure C, Callis J (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci USA 98:11795–11800

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Chen M, Chen X, Xu Z, Li L, Guo J, Ma Y (2010) Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep 37:809–818

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Taeg Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MS., Choi, HS. & Cho, HT. Branching the auxin signaling; Multiple players and diverse interactions. J. Plant Biol. 56, 130–137 (2013). https://doi.org/10.1007/s12374-013-0907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0907-7

Keywords

Navigation