Skip to main content
Log in

Regulation of both light- and auxin-mediated development by theArabidopsis IAA3/SHY2 gene

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Light affects plant growth and development throughout the life cycle. However, light signals do not function autonomously but should be integrated with endogenous developmental factors such as the plant hormone auxin to specify correct developmental decisions. We have previously reported that theArabidopsis shy2-1D mutation alters various light responses, including highly photomorphogenic development in darkness. Here we show that the mutation also alters various auxin responses, including constitutive formation of lateral roots and reduced auxin sensitivity in inhibition of hypocotyl and root growth. The mutation is a gain of function mutation occuring in theIAA3 gene, one of theAux/IAA family genes encoding putative transcription factors of auxin-responsive genes. These results suggest that IAA3/SHY2 may play important roles in both light-and auxin-mediated development Considering that Aux/IAA proteins and auxin response transcription factors interact with one another, we propose that IAA3/SHY2 may integrate light signals into auxin-mediated developmental responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abel S, Nguyen MD, Theologis A (1995) ThePS-IAA4/5- like family of early auxin-inducible mRNAs inArabidopsis thaliana. J Mol Biol 251: 533–549

    Article  PubMed  CAS  Google Scholar 

  • Barnes SA, McGrath RB, Chua N-H (1997) Light signal transduction in plants. Trends Cell Biol 7: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Pelletier G (1998)In planta Agrobacterium-mediated transformation of adultArabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82: 259–266

    PubMed  CAS  Google Scholar 

  • Behringer FJ, Davies PJ (1997) lndole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark-and light-grownPisum seedlings. Planta 188: 85–92

    Article  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckmen T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995)superroot, a recessive mutation inArabidopsis, confers auxin overproduction. Plant Cell 7: 1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Castle LA, Meinke DW (1994) AFUSCA gene ofArabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25–41

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Lee MS, Lee SM, Kim J, Kang BG (1994) Ethyl-ene-lnduced Auxin Sensitivity Changes in Petiole Epinasty of Tomato Mutantdgt. J Plant Biol 37: 257–262

    CAS  Google Scholar 

  • Chory J, Chatterjee M, Cook RK, Elich T, Fankhauser C, Li J, Nagpal R, Neff M, Pepper A, Poole D, Reed J, Vitart V (1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci USA 93: 12066–12071

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Li J (1997) Gibberellins, brassinosteroids and light-regulated development. Plant Cell Env 20: 801–806

    Article  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinin in de-etiolation inArabidopsis. Plant Physiol 104: 339–347

    PubMed  CAS  Google Scholar 

  • Davis PJ (1995) Plant hormones and their roles in plant growth and development. Dordrecht, Kluwer Academic Publishers

    Google Scholar 

  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992)COP1, anArabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71: 791–801

    Article  PubMed  CAS  Google Scholar 

  • Estelle M (1996) Plant tropism: The ins and outs of auxin. Curr Biol 6: 1589–1591

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, and Syono K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors inArabidopsis thaliana. Plant J 12:583–595

    Article  PubMed  CAS  Google Scholar 

  • Furuya M (1993) Phytochromes: their molecular species, gene families, and functions. Annu Rev Plant Physiol Plant Mol Biol 44: 617–645

    Article  CAS  Google Scholar 

  • Furuya M, Schäfer E (1996) Photoperception and signaling of induction reactions by different phytochromes. Trends Plant Sci 1: 301–307

    Google Scholar 

  • Guilfoyle TJ (1998) Aux/IAA proteins and auxin signal transduction. Trends Plant Sci 3: 205–207 Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis. Plant Physiol 116: 455–462

    Article  Google Scholar 

  • Kaufman PB, Wu LL, Brock TG, Kim D (1995) Hormones and the orientation of growth,In PJ Davis, ed, Plant hormones and their roles in plant growth and development, Dordrecht, Kluwer Acadimic Publishers, pp 547–571

    Google Scholar 

  • Kendrick RE, Kronenberg GHM (1994) Photomorphogene-sis in plants. Dordrecht, Kluwer Academic Publishers

    Google Scholar 

  • Kim BC, Soh MS, Hong SH, Furuya M, Nam HG (1998) Photomorphogenic development of theArabidopsis shy2-lD mutation and its interaction with phytochromes in darkness. Plant J 15: 61–68

    Article  PubMed  CAS  Google Scholar 

  • Kim BC, Soh MS, Kang BJ, Furuya M, Nam HG (1996) Two dominant photomorphogenic mutations ofArabidopsis thaliana identified as suppressor mutations ofhy2. Plant J 9: 441–456

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94: 11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Mulkey TJ (1997a) Effect of Auxin and Ethylene on Elongation of Intact Primary Root of Maize (Zea mays L). J Plant Biol 40: 249–257

    Article  CAS  Google Scholar 

  • Kim SY, Mulkey TJ (1997b) Effect of Ethylene Antagonists on Auxin-induced Inhibition of Intact Primary Root Elongation in Maize (Zea mays L.). J Plant Biol 40: 256–260

    CAS  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation inArabidopsis thaliana (L.) Heynh. Z pflanzenphysiol 100: 147–160

    Google Scholar 

  • Kraepiel Y, Marrec K, Sotta B, Caboche M, Miginiac E (1995)In vitro morphogenic characteristics of phytochrome mutants inNicotiana plumbaginifolia are modified and correlated to high indole-3-acetic acid levels. Planta 197: 142–146

    Article  CAS  Google Scholar 

  • Kraepiel Y, Miginiac E (1997) Photomorphogenesis and phytohormones. Plant Cell Env 20: 807–812

    Article  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development ofArabidopsis. Science 272: 398–401

    Article  PubMed  CAS  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi PL, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism inArabidopsis thaliana. Genes Dev 12: 2175–2187

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization ofArabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102: 269–277

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phyto-chrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657–67

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Schafer E, Furuya M (1992) Auxin redistribution during first positive phototropism in corn coleoptile. Microtubule reorientation and the Cholodny-Went theory. Plant Physiol 99: 1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Quail PH (1993)hy8, a new class ofArabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Harberd N (1997) Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants ofArabidopsis. Plant Physiol 113: 1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Pepper A, Delaney T, Washburn T, Poole D, Chory J (1994)DET1, a negative regulator of light-mediated development and gene expression inArabidopsis, encodes a novel nuclear-localized protein. Cell 78: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Robson PRH, Smith H (1996) Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation ofArabidopsis thaliana hypocotyls. Plant Physiol 110: 211–216

    PubMed  CAS  Google Scholar 

  • Rouse D, Mackay P, Strinberg P, Estelle M, Ottoline L (1998) Changes in auxin response from mutations in anAUX/IAA gene. Science 279: 1371–1373

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1994) Sensing the light environment: the functions of the phytochrome family,In RE Kendrick, GHM Kronenberg, eds, Photomorphogenesis in Plants, 2nd edn, Dordrecht, Kluwer Academic Publishers, pp 377–416

    Google Scholar 

  • Su W, Howell SH (1995) The effects of cytokinin and light on hypocotyl elongation inArabidopsis seedlings are independent and additive. Plant Physiol 108: 1423–1430

    PubMed  CAS  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by theArabidopsis thaliana SHY2/IAA3 gene. Development 126: 711–21.

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (1992) What remains for the Cholodny-Went theory? Plant Cell Environ 15: 759–794

    Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin responsive elements. Science 276: 1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/ IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Usmanov PD, Sokhibnazarov SH (1975) Genetic and somatic effects of N-nitroso-methylbiuret onArabidopsis thaliana (L.) Heynh. Genetika 11: 51–58

    CAS  Google Scholar 

  • Weatherwax SC, Ong MS, Degenhardt J, Bray EA, Tobin EM (1996) The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol 111:363–370

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Chamovitz DA, Deng X-W (1994)Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Whitelam G, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants ofArabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757–768

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Miller AJ (1998) Light regulation and biological clocks,In M Anderson, JA Roberts, eds, Arabidopsis Annual Plant Reviews, Vol 1. Sheffield, England, Sheffield Academic Press, pp 331–359

    Google Scholar 

  • Wightman F, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots. I. Sources of primordia-inducing substances in the primary root of pea seedlings. Physiol Plant 49: 13–20

    Article  CAS  Google Scholar 

  • von Arnim AG, Deng X-W (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gil Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soh, M.S., Hong, S.H., Kim, B.C. et al. Regulation of both light- and auxin-mediated development by theArabidopsis IAA3/SHY2 gene. J. Plant Biol. 42, 239–246 (1999). https://doi.org/10.1007/BF03030485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030485

Keywords

Navigation