Skip to main content
Log in

Comparison of Cell Wall Polysaccharide Hydrolysis by a Dilute Acid/Enzymatic Saccharification Process and Rumen Microorganisms

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance in the bioenergy conversion process. Cell wall polysaccharide hydrolysis was compared for a dilute sulfuric acid pretreatment at 121°C followed with cellulase hydrolysis for 72 h conversion assay (CONV) with in vitro rumen microflora incubation for 72 h (RUMEN) for a set of maize (Zea mays L.) stover samples with a wide range in cell wall composition. Residual polysaccharides from the assays were analyzed for sugar components and extent of hydrolysis calculated. Cell wall polysaccharide hydrolysis was different for all sugar components between the CONV and RUMEN assays. The CONV assay hydrolyzed xylose-, arabinose-, galactose-, and uronic acid-containing polysaccharides to a greater degree than did the RUMEN assay, whereas the RUMEN assay was more effective at hydrolyzing glucose- and mannose-containing polysaccharides. Greater hydrolysis of hemicelluloses and pectins by CONV can be attributed to the acid hydrolysis mechanism of the CONV assay for noncellulosic polysaccharides, whereas the RUMEN assay was dependent on enzymatic hydrolysis. While CONV and RUMEN hydrolysis were correlated for most polysaccharide components, the greatest correlation was only r = 0.70 for glucose-containing polysaccharides. Linear correlations and multiple regressions indicated that polysaccharide hydrolysis by the RUMEN assay was negatively associated with lignin concentration and ferulate ether cross linking as expected. Corresponding correlations and regressions for CONV were less consistent and occasionally positive. Use of rumen microbial hydrolysis to characterize biomass performance in a conversion process may have some limited usefulness for genetic evaluations, but such assays would be unreliable for biomass pricing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Mention of a proprietary product does not constitute a recommendation or warranty of the product by USDA or the University of Minnesota, and does not imply approval to the exclusion of other suitable products.

References

  1. Ahmed AER, Labavitch JM (1977) A simplified method for accurate determination of cell wall uronide content. J Food Biochem 1:361–365

    Article  CAS  Google Scholar 

  2. Albrecht KA, Marten GC, Halgerson JL, Wedin WF (1987) Analysis of cell-wall carbohydrates and starch in alfalfa by near infrared reflectance spectroscopy. Crop Sci 27:586–588

    Article  CAS  Google Scholar 

  3. Anderson WF, Dien BS, Brandon SK, Peterson JD (2008) Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl Biochem Biotechnol 145:13–21

    Article  PubMed  CAS  Google Scholar 

  4. Anderson WF, Dien BS, Jung HG, Vogel KP, Weimer PJ (2010) Effects of forage quality and cell wall constituents of bermudagrass on biochemical conversion to ethanol. Bioenerg Res 3:225–237

    Article  Google Scholar 

  5. Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury

    Google Scholar 

  6. Burritt EA, Bittner AS, Street JC, Anderson MJ (1984) Correlations of phenolic acids and xylose content of cell wall with in vitro dry matter digestibility of three maturing grasses. J Dairy Sci 67:1209–1213

    Article  CAS  Google Scholar 

  7. Casler MD, Jung HG (1999) Selection and evaluation of smooth bromegrass clones with divergent lignin and etherified ferulic acid concentration. Crop Sci 39:1866–1873

    Article  CAS  Google Scholar 

  8. Casler MD, Jung HG, Coblentz WK (2008) Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Sci 48:424–433

    Article  Google Scholar 

  9. Casler MD, Vogel KP, Balasko JA, Berdahl JD, Miller DA, Hansen JL et al (2000) Genetic progress from 50 years of smooth bromegrass breeding. Crop Sci 40:13–22

    Article  Google Scholar 

  10. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  11. Cone JW, van Gelder AH, Bachmann H, Hindle VA (2002) Comparison of organic matter degradation in several feedstuffs in the rumen as determined with the nylon bag and gas production techniques. Anim Feed Sci Technol 96:55–67

    Article  CAS  Google Scholar 

  12. Dien BS, Bohtast RJ (2009) A primer for lignicellulosic biochemical conversion to fuel ethanol. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C (eds) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham

    Google Scholar 

  13. Dien BS, Iten L, Skory CD (2005) Converting herbaceous energy crops to bioethanol: a review with emphasis on pretreatment processes. In: Hou CT (ed) Handbook of industrial biocatalysis. Taylor & Francis, Boca Raton

    Google Scholar 

  14. Dien BS, Jung HG, Vogel KP, Casler MD, Lamb JFS, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891

    Article  CAS  Google Scholar 

  15. Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL et al (2009) Improved conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res 2:153–164

    Article  Google Scholar 

  16. Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  17. Grabber JH, Ralph J, Hatfield RD (1998) Severe inhibition of maize wall degradation by synthetic lignins formed with coniferaldehyde. J Sci Food Agric 78:81–87

    Article  CAS  Google Scholar 

  18. Grabber JH, Ralph J, Hatfield RD, Quideau S (1997) p-Hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability. J Agric Food Chem 45:2530–2532

    Article  CAS  Google Scholar 

  19. Grabber JH, Mertens DR, Kim H, Funk C, Lu F, Ralph J (2008) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89:122–129

    Article  Google Scholar 

  20. Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733–737

    Article  CAS  Google Scholar 

  21. Isci A, Murphy PT, Anex RP, Moore KJ (2008) A rapid simultaneous saccharification and fermentation (SSF) technique to determine ethanol yields. Bioenerg Res 1:163–169

    Article  Google Scholar 

  22. Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F, Dixon DA (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg Res 1:180–192

    Article  Google Scholar 

  23. Jung HG, Shalita-Jones SC (1990) Variation in the extractability of esterified p-coumaric and ferulic acids from forage cell walls. J Agric Food Chem 38:397–402

    Article  CAS  Google Scholar 

  24. Jung HG, Casler MD (1991) Relationship of lignin and esterified phenolics to fermentation of smooth bromegrass fibre. Anim Feed Sci Technol 32:63–68

    Article  CAS  Google Scholar 

  25. Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison

    Google Scholar 

  26. Jung HG, Buxton DR (1994) Forage quality variation among maize inbreds: relationships of cell-wall composition and in vitro degradability for stem internodes. J Sci Food Agric 66:313–322

    Article  CAS  Google Scholar 

  27. Jung HG, Lamb JFS (2003) Identification of lucerne stem cell wall traits related to in vitro neutral detergent fibre digestibility. Anim Feed Sci Technol 110:17–29

    Article  CAS  Google Scholar 

  28. Jung HG, Casler MD (2006) Maize stem tissues: cell wall concentration and composition during development. Crop Sci 46:1793–1800

    Article  CAS  Google Scholar 

  29. Jung HG, Ni W, Chapple CCS, Meyer K (1999) Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J Sci Food Agric 79:922–928

    Article  CAS  Google Scholar 

  30. Lewis MF, Lorenzana RE, Jung HG, Bernardo R (2010) Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Sci 50:516–523

    Article  CAS  Google Scholar 

  31. Lorenzana RE, Lewis MF, Jung HG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50:541–555

    Article  Google Scholar 

  32. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  33. McDougall IM (1948) Studies on ruminant saliva: I. the composition and output of sheep's saliva. Biochem J 42:99–109

    Google Scholar 

  34. Mertens DR (1993) Kinetics of cell wall digestion and passage in ruminants. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison

    Google Scholar 

  35. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98:49–58

    Article  PubMed  Google Scholar 

  36. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    Article  CAS  Google Scholar 

  37. Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  38. Rock KP, Thelemann RT, Jung HG, Tschirner UW, Sheaffer CC, Johnson GA (2009) Variation in growth environment in alfalfa yield, cellulosic ethanol traits, and paper pulp characteristics. Bioenerg Res 2:79–89

    Article  Google Scholar 

  39. Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum biocolor (L.) Moench). BioEnergy Res 1:193–204

    Article  Google Scholar 

  40. Sørensen HR, Meyer AS, Pedersen S (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-L-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnol Bioeng 18:726–731

    Article  Google Scholar 

  41. Sticklen MB (2007) Feedstock crop genetic engineering for alcohol fuels. Crop Sci 47:2238–2248

    Article  CAS  Google Scholar 

  42. Theander O, Åman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala Method): collaborative study. J AOAC Int 78:1030–1044

    PubMed  CAS  Google Scholar 

  43. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassl Soc 18:104–111

    Article  CAS  Google Scholar 

  44. Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University, Ithaca

    Google Scholar 

  45. Weimer PJ (1996) Why don't ruminal bacteria digest cellulose faster? J Dairy Sci 79:1496–1502

    Article  PubMed  CAS  Google Scholar 

  46. Weimer PJ, Dien BS, Springer TL, Vogel KP (2005) In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl Microbiol Biotechnol 67:52–58

    Article  PubMed  CAS  Google Scholar 

  47. Weiss WP (1994) Estimation of digestibility of forages by laboratory methods. In: Fahey GC Jr, Collins M, Mertens DR, Moser LE (eds) Forage quality, evaluation, and utilization. ASA-CSSA-SSSA, Madison

    Google Scholar 

  48. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim G. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HJ.G., Bernardo, R. Comparison of Cell Wall Polysaccharide Hydrolysis by a Dilute Acid/Enzymatic Saccharification Process and Rumen Microorganisms. Bioenerg. Res. 5, 319–329 (2012). https://doi.org/10.1007/s12155-011-9131-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9131-9

Keywords

Navigation