Skip to main content
Log in

An Improved End-Point Fluorimetric Procedure for the Determination of Low Amounts of Trypsin Activity in Biological Samples Using Rhodamine-110-Based Substrates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel end-point fluorimetric procedure based on the use of rhodamine-110-labeled specific substrate was developed to determine trypsin activities in biological samples. We evaluated the ability of trichloroacetic acid and acetic acid to stop the enzymatic reaction without hindering the detection of the fluorescence of rhodamine-110 released into the reaction mixture from the specific substrate (CBZ-l-alanyl-l-arginine)2-rhodamine-110. Trichloroacetic acid decreased markedly the fluorescence of rhodamine-110, even at low concentrations. On the other hand, the addition of 50 mmol/l acetic acid inactivated efficiently trypsin activity, causing minor effects on rhodamine-110 fluorescence. The proposed procedure was more sensitive than the spectrophotometric end-point method using N-α-benzoyl-dl-arginine-p-nitroanilide as substrate. The possibility of carrying out end-point fluorimetric assays improves the performance of monocell fluorimeters by setting specific conditions optimal for each enzyme activity independently of the fluorimeter. This method also allows replicate assays to be conducted simultaneously, resulting in considerable time saving and in increased performance of low-cost equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CBZ:

Benzyloxycarbonyl

TCA:

Trichloroacetic acid

Rho-110:

Rhodamine-110

BPC:

Phosphate-citrate buffer

RFU:

Relative fluorescence units

BAPNA:

N-α-Benzoyl-dl-arginine-p-nitroanilide

References

  1. Anson, M. (1938). The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. The Journal of General Physiology, 22, 79–89. doi:10.1085/jgp.22.1.79.

    Article  CAS  Google Scholar 

  2. Walter, H. E. (1984). Proteinases: Methods with haemoglobin, casein and azocoll as substrates. In H. U. Bergmeyer (Ed.), Meth enzym anal (vol. 5, pp. 270–277). Weinheim, Germany: Verlag Chemie.

    Google Scholar 

  3. Tomarelli, R. M., Charney, J., & Harding, M. L. (1949). The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity. The Journal of Laboratory and Clinical Medicine, 34, 428–433.

    CAS  Google Scholar 

  4. Chavira Jr., R., Burnett, T. J., & Hageman, J. H. (1984). Assaying proteinases with azocoll. Analytical Biochemistry, 136, 446–450. doi:10.1016/0003-2697(84)90242-2.

    Article  CAS  Google Scholar 

  5. Sarath, G., de la Motte, R. S., & Wagner, F. W. (1989). Protease assays. In R. J. Beynon, & J. S. Bond (Eds.), Proteolytic enzymes, a practical approach (pp. 25–55). Oxford, UK: IRL Press.

    Google Scholar 

  6. Erlanger, B., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95, 271–278. doi:10.1016/0003-9861(61)90145-X.

    Article  CAS  Google Scholar 

  7. Bieth, J. G., Spiess, B., & Wermuth, C. G. (1974). Synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochemical Medicine, 11, 350–357. doi:10.1016/0006-2944(74)90134-3.

    Article  CAS  Google Scholar 

  8. Del Mar, E. G., Largman, C., Brodrick, J. W., & Geokas, M. C. (1979). A sensitive new substrate for chymotrypsin. Analytical Biochemistry, 99, 316–320. doi:10.1016/S0003-2697(79)80013-5.

    Article  CAS  Google Scholar 

  9. Gravett, P. S., Viljoen, C. C., & Oosthuizen, M. M. (1991). A steady-state kinetic analysis of the reaction between arginine esterase E-I from Bitis gabonica venom and synthetic arginine substrates and the influence of pH, temperature and solvent deuterium isotope. The International Journal of Biochemistry, 23, 1085–1999. doi:10.1016/0020-711X(91)90149-H.

    Article  CAS  Google Scholar 

  10. Gaertner, H. F., & Puigserver, A. J. (1992). Increased activity and stability of poly(ethylene glycol)-modified trypsin. Enzyme and Microbial Technology, 14, 150–155. doi:10.1016/0141-0229(92)90174-M.

    Article  CAS  Google Scholar 

  11. Smith, G. P., MacGregor, R. R., & Peters, T. J. (1982). Localization of leucine aminopeptidase and vitamin B-12 binding protein in rabbit peripheral blood polymorphonuclear leukocytes. Biochimica et Biophysica Acta, 719, 532–538.

    CAS  Google Scholar 

  12. Smith, R. E., Bissell, E. R., Mitchell, A. R., & Pearson, K. W. (1980). Direct photometric or fluorometric assay of proteinases using substrates containing 7-amino-4-trifluoromethylcoumarin. Thrombosis Research, 17, 393–402. doi:10.1016/0049-3848(80)90074-2.

    Article  CAS  Google Scholar 

  13. Leytus, S. P., Patterson, W. L., & Mangel, W. F. (1983). New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine. Journal of Biochemistry, 215, 253–260.

    CAS  Google Scholar 

  14. Twining, S. S. (1984). Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Analytical Biochemistry, 143, 30–34. doi:10.1016/0003-2697(84)90553-0.

    Article  CAS  Google Scholar 

  15. Homer, K. A., & Beighton, D. (1990). Fluorometric determination of bacterial protease activity using fluorescein isothiocyanate-labeled proteins as substrates. Analytical Biochemistry, 191, 133–137. doi:10.1016/0003-2697(90)90399-T.

    Article  CAS  Google Scholar 

  16. Ueberschär, B., Pedersen, B. H., & Hjelmeland, K. (1992). Quantification of trypsin with radioimmunoassay in herring larvae (Clupea harengus) Compared with a highly sensitive fluorescence technique to determine tryptic enzyme activity. Marine Biology (Berlin), 113, 469–473. doi:10.1007/BF00349173.

    Article  Google Scholar 

  17. Yasothornsrikul, S., & Hook, V. Y. H. (2000). Detection of proteolytic activity by fluorescent zymogram in-gel assays. BioTechniques, 28, 1166–1173.

    CAS  Google Scholar 

  18. Haugland, R. P. (2000). Handbook of fluorescent probes and research products (9th ed.). Eugene, OR: Molecular Probes.

    Google Scholar 

  19. Sokal, R., & Rohlf, J. F. (1981). Biometry: The principles and practice of statistics in biological research. WH Freeman: San Francisco.

    Google Scholar 

  20. Grant, S. K., Sklar, J. G., & Cummings, R. T. (2002). Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. Journal of Biomolecular Screening, 7, 531–540. doi:10.1177/1087057102238627.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the grant AGL2001-1831 from the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Alarcón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayoral, J.G., Alarcón, F.J., Martínez, T.F. et al. An Improved End-Point Fluorimetric Procedure for the Determination of Low Amounts of Trypsin Activity in Biological Samples Using Rhodamine-110-Based Substrates. Appl Biochem Biotechnol 160, 1–8 (2010). https://doi.org/10.1007/s12010-008-8520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8520-9

Keywords

Navigation