Skip to main content
Log in

Recognition and Determination of Sulfonamides by Near-IR Fluorimetry Using Their Effect on the Rate of the Catalytic Oxidation of a Carbocyanine Dye by Hydrogen Peroxide

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The work aims at developing fluorimetric methods used for bioassay to expand the range of the determined low-molecular-weight organic analytes and cut down sample preparation operations using available fluorophores, reagents, and identical fluorimetric systems for qualitative and quantitative analysis. We proposed using the reaction of carbocyanine fluorophore oxidation by hydrogen peroxide, catalyzed by copper(II), changing fluorescence intensity in the near-IR region (700 nm). Several organic compounds of different nature accelerate or slow down the indicator reaction, to varying degrees, and at different times of the process. The model analytes were eight sulfonamides, which can be distinguished qualitatively using the kinetic factor in data processing by principal component analysis. We demonstrated on an example of phthalylsulfathiazole that the signal could be obtained not only in an aqueous solution but also in the presence of a turkey muscle homogenate at a level of 0.08–0.5 mM (RSD = 9%) without separation. The prospects for the development of such fluorescence platforms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Demchenko, A.P., Introduction to Fluorescence Sensing, Cham: Springer, 2015.

    Book  Google Scholar 

  2. Verbitskiy, E.V., Rusinov, G.L., Chupakhin, O.N., and Charushin, V.N., Dyes Pigm., 2020, vol. 180, 108414. https://doi.org/10.1016/j.dyepig.2020.108414

    Article  CAS  Google Scholar 

  3. Chen, X., Zhou, Y., Peng, X., and Yoon, J., Chem. Soc. Rev., 2010, vol. 39, p. 2120. https://doi.org/10.1039/b925092a

    Article  CAS  PubMed  Google Scholar 

  4. Salem, F.B., Anal. Lett., 1993, vol. 26, p. 281. https://doi.org/10.1080/00032719308017385

    Article  CAS  Google Scholar 

  5. Gehring, T.A., Rushing, L.G., and Thompson, H.C., Jr., J. AOAC Int., 1997, vol. 80, p. 751.

    Article  CAS  Google Scholar 

  6. Chen, C., Tian, R., Zeng, Y., Chu, C., and Liu, G., Bioconjugate Chem., 2020, vol. 31, p. 276. https://doi.org/10.1021/acs.bioconjchem.9b00734

    Article  CAS  Google Scholar 

  7. Wu, D., Chen, L., Lee, W., Ko, G., Yin, J., and Yoon, J., Coord. Chem. Rev., 2018, vol. 354, p. 74. https://doi.org/10.1016/j.ccr.2017.06.011

    Article  CAS  Google Scholar 

  8. Rukosueva, E.A., Dobrolyubov, E.O., Goryacheva, I.Yu., and Beklemishev, M.K., Microchem. J., 2019, vol. 145, p. 397. https://doi.org/10.1016/j.microc.2018.11.002

    Article  CAS  Google Scholar 

  9. Liu, T., Zhang, S., Liu, W., Zhao, S., Lu, Z., Wang, Y., Wang, G., Zou, P., Wang, X., Zhao, Q., and Rao, H., Sens. Actuators, B, 2020, vol. 305, 127524. https://doi.org/10.1016/j.snb.2019.127524

    Article  CAS  Google Scholar 

  10. Zakharenkova, S.A., Katkova, E.A., Doroshenko, I.A., Kriveleva, A.S., Lebedeva, A.N., Vidinchuk, T.A., Shik, A.V., Abramchuk, S.S., Podrugina, T.A., and Beklemishev, M.K., Spectrochim. Acta, Part A, 2021, vol. 247, 119109. https://doi.org/10.1016/j.saa.2020.119109

    Article  CAS  Google Scholar 

  11. Zhou, Y., Huang, X., Hu, X., Tong, W., Leng, Y., and Xiong, Y., Biosens. Bioelectron., 2021, vol. 190, 113386. https://doi.org/10.1016/j.bios.2021.113386

    Article  CAS  PubMed  Google Scholar 

  12. Mottola, H.A. and Perez-Bendito, D., Anal. Chem., 1994, vol. 66, p. 131.

    Article  Google Scholar 

  13. Crouch, S.R., Scheeline, A., and Kirkor, E.S., Anal. Chem., 2000, vol. 72, p. 53. https://doi.org/10.1021/a1000004b

    Article  CAS  Google Scholar 

  14. Dolmanova, I.F. and Peshkova, V.M., Zh. Anal. Khim., 1964, vol. 19, p. 297.

    CAS  Google Scholar 

  15. Beklemishev, M.K., Petrova, Yu.Yu., and Dolmanova, I.F., Microchim. Acta, 2001, vol. 136, nos. 1–2, p. 35.

    Article  CAS  Google Scholar 

  16. Maudens, K.E., Zhang, G.-F., and Lambert, W.E., J. Chromatogr. A, 2004, vol. 1047, p. 85. https://doi.org/10.1016/j.chroma.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  17. Flores, J.L., Fernandez de Cordova, M.L., and Diaz, A.M., Anal. Chim. Acta, 2007, vol. 600, p. 164.

    Article  CAS  Google Scholar 

  18. Eremin, S.A., Murtazina, N.R., Ermolenko, D.N., Zherdev, A.V., Mart’ianov, A.A., Yazynina, E.V., Michura, I.V., Formanovsky, A.A., and Dzantiev, B.B., Anal. Lett., 2005, vol. 38, p. 951. https://doi.org/10.1081/AL-200054059

    Article  CAS  Google Scholar 

  19. Miliero, F.J., Sharma, V.K., and Karn, B., Mar. Chem., 1991, vol. 36, p. 71.

    Article  Google Scholar 

  20. Humphry-Baker, R., Graetzel, M., and Steiger, R., J. Am. Chem. Soc., 1980, vol. 102, p. 847.

    Article  CAS  Google Scholar 

  21. Madenci, D. and Egelhaaf, S.U., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, p. 109. https://doi.org/10.1016/j.cocis.2009.11.010

    Article  CAS  Google Scholar 

  22. Bult, A., Uitterdijk, J.D., and Klasen, H.B., Transition Met. Chem., 1979, vol. 4, p. 285.

    CAS  Google Scholar 

  23. Reineck, P. and Gibson, B.C., Adv. Opt. Mater., 2017, vol. 5, no. 2, p. 1600446. https://doi.org/10.1002/adom.201600446

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. Dobrotvorsky (photodrom.com) for providing NIR cameras and V. Orekhov for his help in chemometrics calculations.

Funding

This work was supported by the Russian Science Foundation, project no. 20-13-00330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Beklemishev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, I.A., Lebedeva, A.N., Shik, A.V. et al. Recognition and Determination of Sulfonamides by Near-IR Fluorimetry Using Their Effect on the Rate of the Catalytic Oxidation of a Carbocyanine Dye by Hydrogen Peroxide. J Anal Chem 76, 1399–1407 (2021). https://doi.org/10.1134/S1061934821120121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821120121

Keywords:

Navigation