Skip to main content
Log in

Clinical investigation and imaging

  • Current Concept Review
  • Published:
Journal of Children's Orthopaedics

Abstract

Adolescent idiopathic scoliosis (AIS) affects 2–4 % of children and is diagnosed between age 10 and skeletal maturity. The female to male ratio for mild curves less than 20° is 1.5:1; however, progression to a severe deformity occurs more often in females (Weinstein in JAMA 289(5):559–567, 2003). Despite significant ongoing research, including into the genetic basis for AIS, there are currently no identifiable causes, and therefore the disorder still remains a diagnosis of exclusion. History, physical examination and radiographic assessment must exclude other possible causes of spinal deformity and are crucial in predicting the risk of curve progression. History should focus on family history, menarche, presence or absence of pain, sports activities and neurologic changes. Physical examination concentrates on anthropometric data, pubertal staging, neurologic testing and specific investigation of the spine, with the Adams’ forward bending test being the most meaningful step to evaluate trunk rotation. Definitive diagnosis cannot be made without imaging. The gold standard remains plain radiography with assessment of the Cobb angle on a standing coronal radiograph of the entire spine. A lateral X-ray is used for assessing sagittal balance and for evaluating the deformity in the sagittal plane. If available, surface topography can accompany the follow-up in AIS, reducing the radiation exposure. The role of magnetic resonance imaging (MRI) in AIS is an ongoing matter of debate. Common indications for MRI are the presence of an atypical curve pattern and abnormal neurological findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weinstein SL et al (2003) Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA 289(5):559–567

    Article  Google Scholar 

  2. Kesling KL (1997) A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22(17):2009–2014 (discussion 2015)

    Article  CAS  Google Scholar 

  3. Andersen MO, Thomsen K, Kyvik KO (2007) Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976) 32(8):927–930

    Article  Google Scholar 

  4. Ward K et al (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35(25):E1455–E1464

    Article  Google Scholar 

  5. Guo X et al (2005) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis–result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur Spine J 14(9):862–873

    Article  CAS  Google Scholar 

  6. Tanchev PI et al (2000) Scoliosis in rhythmic gymnasts. Spine (Phila Pa 1976) 25(11):1367–1372

    Article  CAS  Google Scholar 

  7. Meyer C et al (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16(4):231–236

    Article  CAS  Google Scholar 

  8. DiMeglio A, Canavese F, Charles YP (2011) Growth and adolescent idiopathic scoliosis: when and how much? J Pediatr Orthop 31(1 Suppl): S28–36

    Google Scholar 

  9. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44(235):291–303

    Article  CAS  Google Scholar 

  10. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45(239):13–23

    Article  CAS  Google Scholar 

  11. Saifuddin A et al (2005) Prevalence and clinical significance of superficial abdominal reflex abnormalities in idiopathic scoliosis. Eur Spine J 14(9):849–853

    Article  Google Scholar 

  12. Zadeh HG et al (1995) Absent superficial abdominal reflexes in children with scoliosis. An early indicator of syringomyelia. J Bone Joint Surg Br 77(5):762–767

    CAS  Google Scholar 

  13. Fribourg D, Delgado E (2004) Occult spinal cord abnormalities in children referred for orthopedic complaints. Am J Orthop (Belle Mead NJ) 33(1):18–25

    Google Scholar 

  14. Adams W (1865) Lectures on the pathology and treatment of lateral and other forms of curvature of the spine. Churchill, London

    Google Scholar 

  15. Bunnell WP (1984) An objective criterion for scoliosis screening. J Bone Joint Surg Am 66(9):1381–1387

    CAS  Google Scholar 

  16. Murrell GA et al (1993) An assessment of the reliability of the Scoliometer. Spine (Phila Pa 1976) 18(6):709–712

    Article  CAS  Google Scholar 

  17. Cote P et al (1998) A study of the diagnostic accuracy and reliability of the Scoliometer and Adam’s forward bend test. Spine (Phila Pa 1976) 23(7):796–802 discussion 803

    Article  CAS  Google Scholar 

  18. Sapkas G et al (2003) Prediction of Cobb angle in idiopathic adolescent scoliosis. Clin Orthop Relat Res 411:32–39

    Article  Google Scholar 

  19. Pruijs JE et al (1994) Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 23(7):517–520

    Article  CAS  Google Scholar 

  20. Malfair D et al (2010) Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 194(3 Suppl):S8–S22

    Article  Google Scholar 

  21. Nash CL Jr, Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51(2):223–229

    Google Scholar 

  22. Perdriolle R, Vidal J (1987) Morphology of scoliosis: three-dimensional evolution. Orthopedics 10(6):909–915

    CAS  Google Scholar 

  23. Risser JC (1958) The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop 11:111–119

    CAS  Google Scholar 

  24. Vital JM et al (1989) Radiologic change of cartilage of the pelvis and the upper end of the femur during growth. Application to the surveillance of scolioses. Chir Pediatr 30(2):103–108

    CAS  Google Scholar 

  25. Sauvegrain J, Nahum H, Bronstein H (1962) Study of bone maturation of the elbow. Ann Radiol (Paris) 5:542–550

    CAS  Google Scholar 

  26. Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19(11):1824–1836

    Article  Google Scholar 

  27. Mac-Thiong JM et al (2007) Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 16(2):227–234

    Article  Google Scholar 

  28. Liu RW et al (2010) Comparison of supine bending, push-prone, and traction under general anesthesia radiographs in predicting curve flexibility and postoperative correction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35(4):416–422

    Article  Google Scholar 

  29. Lamarre ME et al (2009) Assessment of spinal flexibility in adolescent idiopathic scoliosis: suspension versus side-bending radiography. Spine (Phila Pa 1976) 34(6):591–597

    Article  Google Scholar 

  30. Li J et al (2011) Coronal deformity correction in adolescent idiopathic scoliosis patients using the fulcrum-bending radiograph: a prospective comparative analysis of the proximal thoracic, main thoracic, and thoracolumbar/lumbar curves. Eur Spine J 20(1):105–111

    Article  Google Scholar 

  31. Kleinman RG et al (1982) The radiographic assessment of spinal flexibility in scoliosis: a study of the efficacy of the prone push film. Clin Orthop Relat Res 162:47–53

    Google Scholar 

  32. Klepps SJ et al (2001) Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 26(5):E74–E79

    Article  CAS  Google Scholar 

  33. Cheung KM, Luk KD (1997) Prediction of correction of scoliosis with use of the fulcrum bending radiograph. J Bone Joint Surg Am 79(8):1144–1150

    CAS  Google Scholar 

  34. Davis BJ et al (2004) Traction radiography performed under general anesthetic: a new technique for assessing idiopathic scoliosis curves. Spine (Phila Pa 1976) 29(21):2466–2470

    Article  Google Scholar 

  35. Hasler CC, Hefti F, Buchler P (2010) Coronal plane segmental flexibility in thoracic adolescent idiopathic scoliosis assessed by fulcrum-bending radiographs. Eur Spine J 19(5):732–738

    Article  Google Scholar 

  36. Bone CM, Hsieh GH (2000) The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop 20(2):251–254

    CAS  Google Scholar 

  37. Hoffman DA et al (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic X rays. J Natl Cancer Inst 81(17):1307–1312

    Article  CAS  Google Scholar 

  38. Kluba T et al (2006) Prospective randomized comparison of radiation exposure from full spine radiographs obtained in three different techniques. Eur Spine J 15(6):752–756

    Article  Google Scholar 

  39. Deschenes S et al (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976) 35(9):989–994

    Article  Google Scholar 

  40. Willner S (1979) Moire topography for the diagnosis and documentation of scoliosis. Acta Orthop Scand 50(3):295–302

    Article  CAS  Google Scholar 

  41. Willner S (1979) Moire topography: a method for school screening of scoliosis. Arch Orthop Trauma Surg 95(3):181–185

    Article  CAS  Google Scholar 

  42. Daruwalla JS, Balasubramaniam P (1985) Moire topography in scoliosis. Its accuracy in detecting the site and size of the curve. J Bone Joint Surg Br 67(2):211–213

    CAS  Google Scholar 

  43. Adair IV, Van Wijk MC, Armstrong GW (1977) Moire topography in scoliosis screening. Clin Orthop Relat Res 129:165–171

    Article  Google Scholar 

  44. Hackenberg L et al (2003) Rasterstereographic back shape analysis in idiopathic scoliosis after posterior correction and fusion. Clin Biomech (Bristol, Avon) 18(10):883–889

    Google Scholar 

  45. Hackenberg L et al. (2003) Rasterstereographic back shape analysis in idiopathic scoliosis after anterior correction and fusion. Clin Biomech (Bristol, Avon) 18(1):1–8

    Google Scholar 

  46. Schulte TL et al (2008) Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis. J Spinal Disord Tech 21(1):23–28

    Article  Google Scholar 

  47. Stokes IA (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7(5):702–708

    Article  CAS  Google Scholar 

  48. Stokes IA, Armstrong JG, Moreland MS (1988) Spinal deformity and back surface asymmetry in idiopathic scoliosis. J Orthop Res 6(1):129–137

    Article  CAS  Google Scholar 

  49. Goldberg CJ et al (2001) Surface topography, Cobb angles, and cosmetic change in scoliosis. Spine (Phila Pa 1976) 26(4):E55–E63

    Article  CAS  Google Scholar 

  50. Do T et al (2001) Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis. A prospective study of three hundred and twenty-seven patients. J Bone Joint Surg Am 83-A(4):577–579

    CAS  Google Scholar 

  51. Maiocco B et al (1997) Adolescent idiopathic scoliosis and the presence of spinal cord abnormalities. Preoperative magnetic resonance imaging analysis. Spine (Phila Pa 1976) 22(21):2537–2541

    Article  CAS  Google Scholar 

  52. Davids JR, Chamberlin E, Blackhurst DW (2004) Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am 86-A(10):2187–2195

    Google Scholar 

Download references

Conflict of interest

I have not received funds for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Studer.

About this article

Cite this article

Studer, D. Clinical investigation and imaging. J Child Orthop 7, 29–35 (2013). https://doi.org/10.1007/s11832-012-0461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11832-012-0461-8

Keywords

Navigation