Skip to main content
Log in

Coronal plane segmental flexibility in thoracic adolescent idiopathic scoliosis assessed by fulcrum-bending radiographs

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Knowledge about segmental flexibility in adolescent idiopathic scoliosis is crucial for a better biomechanical understanding, particularly for the development of fusionless, growth-guiding techniques. Currently, there is lack of data in this field. The objective of this study was, therefore, to compute segmental flexibility indices (standing angle minus corrected angle/standing angle). We compared segmental disc angles in 76 preoperative sets of standing and fulcrum-bending radiographs of thoracic curves (paired, two-tailed t tests, p < 0.05). The mean standing Cobb angle was 59.7° (range 41.3°–95°) and the flexibility index of the curve was 48.6% (range 16.6–78.8%). The disc angles showed symmetric periapical distribution with significant decrease (all p values <0.0001) for every cephalad (+) and caudad (−) level change. The periapical levels +1 and −1 wedged at 8.3° and 8.7° (range 3.5°–14.8°), respectively. All angles were significantly smaller on the-bending views (p values <0.0001). We noted mean periapical flexibility indices of 46% (+1), 49% (−1), 57% (+2) and 81% (−2), which were significantly less (p < 0.001) than for the group of remote levels 105% (+3), 149% (−3), 231% (+4) and 300% (−4). The discal and bony wedging was 60 and 40%, respectively, and mean values 35° and 24° (p < 0.0001). Their relationship with the Cobb angle showed a moderate correlation (r = 0.56 and 0.45). Functional, radiographic analysis of idiopathic thoracic scoliosis revealed significant, homogenous segmental tethering confined to four periapical levels. Future research will aim at in vivo segmental measurements in three planes under defined load to provide in-depth data for novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Betz RR, D’Andrea LP, Mulcahey MJ, Chafetz RS (2005) Vertebral body stapling procedure for the treatment of scoliosis in the growing child. Clin Orthop Relat Res 434:55–60

    Article  PubMed  Google Scholar 

  2. Grivas TB, Vasiliadis ES, Rodopoulos G, Bardakos N (2008) The role of the intervertebral disc in correction of scoliotic curves. A theoretical model of idiopathic scoliosis pathogenesis. Stud Health Technol Inform 140:33–36

    CAS  PubMed  Google Scholar 

  3. Schmid EC, Aubin CE, Moreau A, Sarwark J, Parent S (2008) A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities. Eur Spine J 17:1329–1335. doi:10.1007/s00586-008-0723-9

    Article  PubMed  Google Scholar 

  4. Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN (2006) Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine (Phila Pa 1976) 31:262–268. doi:10.1097/01.brs.0000197569.13266.fe

    Google Scholar 

  5. Campbell RM Jr, Hell-Vocke AK (2003) Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am 85-A:409–420

    PubMed  Google Scholar 

  6. Akyuz E, Braun JT, Brown NA, Bachus KN (2006) Static versus dynamic loading in the mechanical modulation of vertebral growth. Spine (Phila Pa 1976) 31:E952–E958. doi:10.1097/01.brs.0000248810.77151.22

    Google Scholar 

  7. Lamarre ME, Parent S, Labelle H, Aubin CE, Joncas J, Cabral A, Petit Y (2009) Assessment of spinal flexibility in adolescent idiopathic scoliosis: suspension versus side-bending radiography. Spine (Phila Pa 1976) 34:591–597. doi:10.1097/BRS.0b013e318193a23d

    Google Scholar 

  8. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    CAS  PubMed  Google Scholar 

  9. Cheung KM, Luk KD (1997) Prediction of correction of scoliosis with use of the fulcrum-bending radiograph. J Bone Joint Surg Am 79:1144–1150

    CAS  PubMed  Google Scholar 

  10. Kuklo TR, Potter BK, Polly DW Jr, O’Brien MF, Schroeder TM, Lenke LG (2005) Reliability analysis for manual adolescent idiopathic scoliosis measurements. Spine (Phila Pa 1976) 30:444–454. doi:00007632-200502150-00013[pii]

    Google Scholar 

  11. Gardner-Morse MG, Stokes IA (2004) Structural behavior of human lumbar spinal motion segments. J Biomech 37:205–212

    Article  PubMed  Google Scholar 

  12. Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 34:E76–E82. doi:10.1097/BRS.0b013e31818ad584

    Google Scholar 

  13. Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng AB (2008) Preoperative planning simulator for spinal deformity surgeries. Spine (Phila Pa 1976) 33:2143–2152. doi:10.1097/BRS.0b013e31817bd89f

    CAS  Google Scholar 

  14. Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J (2001) Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 26:E74–E79

    CAS  Google Scholar 

  15. Hamzaoglu A, Talu U, Tezer M, Mirzanli C, Domanic U, Goksan SB (2005) Assessment of curve flexibility in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 30:1637–1642. doi:00007632-200507150-00013[pii]

    Google Scholar 

  16. Hay D, Izatt MT, Adam CJ, Labrom RD, Askin GN (2008) The use of fulcrum-bending radiographs in anterior thoracic scoliosis correction: a consecutive series of 90 patients. Spine (Phila Pa 1976) 33:999–1005. doi:10.1097/BRS.0b013e31816c8343

    Google Scholar 

  17. Watanabe K, Kawakami N, Nishiwaki Y, Goto M, Tsuji T, Obara T, Imagama S, Matsumoto M (2007) Traction versus supine side-bending radiographs in determining flexibility: what factors influence these techniques? Spine (Phila Pa 1976) 32:2604–2609. doi:10.1097/BRS.0b013e318158cbcb

    Google Scholar 

  18. Ibrahim T, Gabbar OA, El-Abed K, Hutchinson MJ, Nelson IW (2008) The value of radiographs obtained during forced traction under general anaesthesia in predicting flexibility in idiopathic scoliosis with Cobb angles exceeding 60 degree. J Bone Joint Surg Br 90:1473–1476. doi:10.1302/0301-620X.90B11.20690

    CAS  PubMed  Google Scholar 

  19. Jhaveri SN, Zeller R, Miller S, Lewis SJ (2009) The effect of intra-operative skeletal (skull femoral) traction on apical vertebral rotation. Eur Spine J 18:352–356. doi:10.1007/s00586-008-0852-1

    Article  PubMed  Google Scholar 

  20. White AA 3rd, Panjabi MM (1976) The clinical biomechanics of scoliosis. Clin Orthop Relat Res 118:100–112

    Google Scholar 

  21. Deviren V, Berven S, Kleinstueck F, Antinnes J, Smith JA, Hu SS (2002) Predictors of flexibility and pain patterns in thoracolumbar and lumbar idiopathic scoliosis. Spine (Phila Pa 1976) 27:2346–2349. doi:10.1097/01.BRS.0000030300.45392.BF

    Google Scholar 

  22. Modi HN, Suh SW, Song HR, Yang JH, Kim HJ, Modi CH (2008) Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis–a cross sectional study in 150 patients. Scoliosis 3:11. doi:10.1186/1748-7161-3-11

    Article  PubMed  Google Scholar 

  23. Stokes IA, Aronsson DD (2001) Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord 14:317–322

    Article  CAS  PubMed  Google Scholar 

  24. Meir AR, Fairbank JC, Jones DA, McNally DS, Urban JP (2007) High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:4. doi:10.1186/1748-7161-2-4

    Article  PubMed  Google Scholar 

  25. Cheung KM, Lu DS, Zhang H, Luk KD (2006) In vivo demonstration of the effectiveness of thoracoscopic anterior release using the fulcrum-bending radiograph: a report of five cases. Eur Spine J 15(Suppl 5):578–582. doi:10.1007/s00586-005-0027-2

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this study. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol-Claudius Hasler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasler, CC., Hefti, F. & Büchler, P. Coronal plane segmental flexibility in thoracic adolescent idiopathic scoliosis assessed by fulcrum-bending radiographs. Eur Spine J 19, 732–738 (2010). https://doi.org/10.1007/s00586-010-1320-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1320-2

Keywords

Navigation