Skip to main content
Log in

Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Fauchais, J. Heberlein, and M. Boulos, Thermal Spray Thermal Spray Fundamentals, Springer, Berlin, 2014

    Book  Google Scholar 

  2. R.C. Tucker, Jr., Ed., Thermal Spray Technology, Vol 5A, ASM Int. Handbook, Ohio, 2013

    Google Scholar 

  3. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37, p 86-108

    Article  Google Scholar 

  4. A.H. Wilson, Thermodynamic and Statistical Mechanics, Cambridge University Press, Cambridge, 1957

    Google Scholar 

  5. H.W. Drawin, Thermodynamic Properties of the Equilibrium and Nonequilibrium States of Plasmas, Reactions Under Plasma Conditions, M. Venugopalan, Ed., Wiley Intercience, New York, 1972,

    Google Scholar 

  6. M. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Applications, Plenum Press, New York, 1994

    Book  Google Scholar 

  7. M. Mitchner and C.H. Kruger, Jr., Partially Ionized Gases, Wiley, New York, 1973

    Google Scholar 

  8. E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, Hemisphere Publishing, Washington, 1978

    Google Scholar 

  9. E. Pfender, Heat and Momentum Transfer to Particles in Thermal Plasma Flows, Pure Appl. Chem., 1985, 57, p 1179-1196

    Article  Google Scholar 

  10. X. Chen and E. Pfender, Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma, Plasma Chem. Plasma Process., 1983, 3, p 97-113

    Article  Google Scholar 

  11. E. Pfender and Y.C. Lee, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I. The Motion of a Single Particle Without Thermal Effects, Plasma Chem. Plasma Process., 1985, 5(3), p 211-237

    Article  Google Scholar 

  12. Y.C. Lee, Y.P. Chyou, and E. Pfender, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part II. Particle Heat and Mass Transfer in Thermal Plasmas, Plasma Chem. Plasma Process., 1985, 5(4), p 391-414

    Article  Google Scholar 

  13. E. Pfender, Particle Behavior in Thermal Plasmas, Plasma Chem. Plasma Process., 1989, 9(Suppl. 1), p 167S-194S

    Article  Google Scholar 

  14. A. Vardelle, P. Fauchais, B. Dussoubs, and N.J. Themelis, Heat Generation and Particle Injection in a Thermal Plasma Torch, Plasma Chem. Plasma Process., 1998, 18(4), p 551-574

    Article  Google Scholar 

  15. Y.C. Lee, Y.P. Chyou, and E. Pfender, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part III. Thermal Plasma Jet Reactors and Multiparticle Injection, Plasma Chem. Plasma Process., 1997, 7(1), p 1-27

    Article  Google Scholar 

  16. P. Fauchais, J.F. Coudert, and M. Vardelle, Diagnostics in Thermal Plasma Processing, Plasma Diagnostics, Vol 1, O. Auciello and D.L. Flamm, Ed., Academic Press, London, 1989, p 349-446

    Chapter  Google Scholar 

  17. P. Fauchais et al., Diagnostics of Thermal Spraying Plasma Jets, J. Therm. Spray Technol., 1992, 1(2), p 117-128

    Article  Google Scholar 

  18. A. Vardelle, M. Vardelle, R. McPherson, and P. Fauchais, Thermal Spray Conf., Nederlands Instituut voor Lastechniek, The Hague, The Netherlands, 1980, p 225-231

  19. M. Vardelle, A. Vardelle, P. Fauchais, K.-I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10, p 267-286

    Article  Google Scholar 

  20. C. Moreau, J.-F. Bisson, R.S. Lima, and B.R. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77, p 443-462

    Article  Google Scholar 

  21. P. Fauchais and M. Vardelle, Sensors in Spray Processes, J. Therm. Spray Technol., 2010, 19, p 668-694

    Article  Google Scholar 

  22. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  23. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    Article  Google Scholar 

  24. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201, p 7789-7801

    Article  Google Scholar 

  25. A. McDonald, M. Lamontagne, S. Chandra, and C. Moreau, Photographing Impact of Plasma Sprayed Particles on Metal Substrates, J. Therm. Spray Technol., 2006, 15(4), p 708-716

    Article  Google Scholar 

  26. S. Goutier, M. Vardelle, J.C. Labbe, and P. Fauchais, Flattening and Cooling of Millimeter- and Micrometer-Sized Alumina Drops, J. Therm. Spray Technol., 2011, 20(1-2), p 59-67

    Article  Google Scholar 

  27. A. Vardelle, M. Vardelle, and P. Fauchais, Influence of Velocity and Surface Temperature of Alumina Particles on the Properties of Plasma Sprayed Coatings, Plasma Chem. Plasma Process., 1982, 2(3), p 255-291

    Article  Google Scholar 

  28. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Splat Formation and Solidification in Plasma Parameters at Impact on Spraying Processes, J. Therm. Spray Technol., 1994, 4(1), p 50-58

    Article  Google Scholar 

  29. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63

    Article  Google Scholar 

  30. P. Fauchais, G. Montavon, R.S. Lima, and B.R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D, 2011, 44, p 093001

    Article  Google Scholar 

  31. O. Marchand, L. Girardot, M.P. Planche, P. Bertrand, Y. Bailly, and G. Bertrand, An Insight into Suspension Plasma Spray: Injection of the Suspension and Its Interaction with the Plasma Flow, J. Therm. Spray Technol., 2011, 20(6), p 1310-1320

    Article  Google Scholar 

  32. P. Fauchais, V. Rat, C. Delbos, J.-F. Coudert, T. Chartier, and L. Bianchi, Understanding of Suspension D.C. Plasma Spraying of Finely Structured Coatings for SOFC, IEEE Trans. Plasma Sci., 2005, 33(2), p 920-930

    Article  Google Scholar 

  33. P. Fauchais, A. Joulia, S. Goutier, C. Chazelas, M. Vardelle, A. Vardelle, and S. Rossignol, Suspension and Solution Plasma Spraying, J. Phys. D Appl. Phys., 2013, 46, p 224015

    Article  Google Scholar 

  34. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using The Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202, p 2132-2138

    Article  Google Scholar 

  35. E.H. Jordan, L. Xie, X. Ma, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    Article  Google Scholar 

  36. C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Identification of Desirable Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802-816

    Article  Google Scholar 

  37. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202, p 1994-2001

    Article  Google Scholar 

  38. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Structural Considerations in Plasma Spraying of the Alumina-Zirconia Composite, Surf. Coat. Technol., 2011, 205, p 5437-5443

    Article  Google Scholar 

  39. R. Vaßen, N. Czech, W. Malléner, W. Stamm, and D. Stöver, Influence of Impurity Content and Porosity of Plasma-Sprayed Yttria-Stabilized Zirconia Layers on the Sintering Behaviour, Surf. Coat. Technol., 2001, 141, p 135-140

    Article  Google Scholar 

  40. M.P. Planche, H. Liao, and C. Coddet, Oxidation Control in Atmospheric Plasma Spraying Coating, Surf. Coat. Technol., 2007, 202, p 69-76

    Article  Google Scholar 

  41. L. Bianchi, A. Grimaud, F. Blein, P. Lucchse, and R. Fauchais, Comparison of Plasma-Sprayed Alumina Coatings by RF and DC Plasma Spraying, J. Therm. Spray Technol., 1995, 4(1), p 59-66

    Article  Google Scholar 

  42. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Splat Formation for Plasma Sprayed NiCr on Aluminum Substrate as a Function of Substrate Condition, Surf. Coat. Technol., 2010, 204, p 2647-2656

    Article  Google Scholar 

  43. V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Therm. Spray Technol., 2003, 12(3), p 370-376

    Article  Google Scholar 

  44. A.T.T. Tran and M.M. Hyland, The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations, J. Therm. Spray Technol., 2010, 19(1-2), p 11-23

    Article  Google Scholar 

  45. A.T.T. Tran, M.M. Hyland, K. Shinoda, and S. Sampath, Inhibition of Molten Droplet Deposition by Substrate Surface Hydroxides, Surf. Coat. Technol., 2011, 206, p 1283-1292

    Article  Google Scholar 

  46. B. Kharas, G. Wei, S. Sampath, and H. Zhang, Morphology and Microstructure of Thermal Plasma Sprayed Silicon Splats and Coatings, Surf. Coat. Technol., 2006, 201, p 1454-1463

    Article  Google Scholar 

  47. J. Cedelle, M. Vardelle, and P. Fauchais, Influence of Stainless Steel Substrate Preheating on Surface Topography and on Millimeter- and Micrometer-Sized Splat Formation, Surf. Coat. Technol., 2006, 201, p 1373-1382

    Article  Google Scholar 

  48. A.A. Syed, A. Denoirjean, B. Hannoyer, P. Fauchais, P. Denoirjean, A.A. Khan, and J.C. Labbe, Influence of Substrate Surface Conditions on the Plasma Sprayed Ceramic and Metallic Particles Flattening, Surf. Coat. Technol., 2005, 200, p 2317-2331

    Article  Google Scholar 

  49. S. Goutier, M. Vardelle, and P. Fauchais, Understanding of Spray Coating Adhesion Through the Formation of a Single Lamella, J. Therm. Spray Technol., 2012, 21(3-4), p 522-530

    Article  Google Scholar 

  50. S. Goutier, M. Vardelle, and P. Fauchais, Comparison Between Metallic and Ceramic Splats: Influence of Viscosity and Kinetic Energy on the Particle Flattening, Surf. Coat. Technol., 2013, 235, p 657-668

    Article  Google Scholar 

  51. J. Mostaghimi and S. Chandra, Splat Formation in Plasma-Spray Coating Process, Pure Appl. Chem., 2002, 74(3), p 441-445

    Article  Google Scholar 

  52. D. Li, H. Zhao, X. Zhong, C. Liu, L. Wang, K. Yan, and S. Tao, Effect of the Bond Coating Surface Morphology on Ceramic Splat Construction, J. Therm. Spray Technol., 2015, 24(8), p 1450-1458

    Article  Google Scholar 

  53. M.F. Morks, Y. Tsunekawa, M. Okumiya, and M.A. Shoeib, Splat Morphology and Microstructure of Plasma Sprayed Cast Iron with Different Preheat Substrate Temperatures, J. Therm. Spray Technol., 2002, 11(2), p 226-232

    Article  Google Scholar 

  54. M.F. Morks, Y. Tsunekawa, M. Okumiya, and M.A. Shoeib, Splat Microstructure of Plasma Sprayed Cast Iron with Different Chamber Pressures, J. Therm. Spray Technol., 2003, 12(2), p 282-289

    Article  Google Scholar 

  55. H.R. Salimijazi, L. Pershin, T.W. Coyle, J. Mostaghimi, S. Chandra, Y.C. Lau, L. Rosenzweig, and E. Moran, Effect of Droplet Characteristics and Substrate Surface Topography on the Final Morphology of Plasma-Sprayed Zirconia Single Splats, J. Therm. Spray Technol., 2007, 16(2), p 291-299

    Article  Google Scholar 

  56. K. Shinoda and H. Murakami, Splat Morphology of Yttria-Stabilized Zirconia Droplet Deposited Via Hybrid Plasma Spraying, Spraying, J. Therm. Spray Technol., 2010, 19(3), p 602-610

    Article  Google Scholar 

  57. O.P. Solonenko, Formation of Splats from Suspension Particles with Solid Inclusions Finely Dispersed in a Melted Metal Matrix, J. Therm. Spray Technol., 2012, 21(6), p 1135

    Article  Google Scholar 

  58. M. Fukumoto, E. Nishioka, and T. Nishiyama, New Criterion for Splashing in Flattening of Thermal Sprayed Particles onto Flat Substrate Surface, Surf. Coat. Technol., 2002, 161, p 103-110

    Article  Google Scholar 

  59. A. Abedini, A. Pourmousa, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on the Properties of Coatings and Splats Deposited by Wire Arc Spraying, Surf. Coat. Technol., 2006, 201, p 3350-3358

    Article  Google Scholar 

  60. K. Yang, M. Fukumoto, T. Yasui, and M. Yamada, Role of Substrate Temperature on Microstructure Formation in Plasma-Sprayed Splats, Surf. Coat. Technol., 2013, 214, p 138-143

    Article  Google Scholar 

  61. M. Xue, S. Chandra, and J. Mostaghimi, Investigation of Splat Curling up in Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 531-536

    Article  Google Scholar 

  62. Y. Zhang, M. Hyland, A. Tran, and S. Matthews, Effect of Substrates Temperatures on the Spreading Behavior of Plasma-Sprayed Ni and Ni-20 wt.% Cr Splats, J. Therm. Spray Technol., 2016, 25(1-2), p 71-81

    Article  Google Scholar 

  63. Z. Zheng, L. Luo, and Q. Li, Mechanism of Competitive Grain Growth in 8YSZ Splats Deposited by Plasma Spraying, J. Therm. Spray Technol., 2015, 24(5), p 885

    Article  Google Scholar 

  64. Y.-Z. Xing, X.H. Li, Q. Wang, Y. Zhang, and X.D. Song, Substrate Temperature Dependence of Splat Morphology for Plasma-Sprayed Cast Iron on Aluminum Surface, Surf. Coat. Technol., 2015, 283, p 234-240

    Article  Google Scholar 

  65. O.P. Solonenko, Theoretical Analysis of Cermet Splats Formation Under Porous Quasi-Liquid Particle ‘Melted Binder—Suspended Ultrafine Refractory Inclusions’ Impacting With Substrate, Surf. Coat. Technol., 2015, 277, p 128-135

    Article  Google Scholar 

  66. Y. Tanaka and M. Fukumoto, Investigation of Dominating Factors on Flattening Behavior of plasma Sprayed Ceramic Particles, Surf. Coat. Technol., 1999, 120-121, p 124-130

    Article  Google Scholar 

  67. M. Parco, L. Zhao, J. Zwick, K. Bobzin, and E. Lugscheider, Investigation of Particle Flattening Behaviour and Bonding Mechanisms of APS Sprayed Coatings on Magnesium Alloys, Surf. Coat. Technol., 2007, 201, p 6290-6296

    Article  Google Scholar 

  68. T. Chraska and A.H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia—A TEM Study, Surf. Coat. Technol., 2002, 157, p 238-246

    Article  Google Scholar 

  69. M. Mellali, P. Fauchais, and A. Grimaud, Influence of Substrate Roughness and Temperature on the Adhesion/Cohesion of Alumina Coatings, Surf. Coat. Technol., 1996, 81, p 275-286

    Article  Google Scholar 

  70. O. Kovářík, P. Haušild, J. Siegl, T. Chráska, J. Matějíček, Z. Pala, and M. Boulos, The Influence of Substrate Temperature on Properties of APS and VPS W Coatings, Surf. Coat. Technol., 2015, 268, p 7-14

    Article  Google Scholar 

  71. H. Li, S. Costil, H.-L. Liao, C.-J. Li, M. Planche, and C. Coddet, Effects of Surface Conditions on the Flattening Behavior of Plasma Sprayed Cu Splats, Surf. Coat. Technol., 2006, 200, p 5435-5446

    Article  Google Scholar 

  72. T. Haure, “Multifunctional Layers Obtained by a Multi-technique Process,” Ph.D. Univ. of Limoges, France, 2003

  73. A. Itoh, K. Takeda, M. Itoh, and M. Koga, Pretreatements of Substrates by Using Reversed Transferred Arc in Low Pressure Plasma Spray, Thermal Spray: Research and Applications, T.F. Bernicki, Ed., ASM Int, Materials Park, 1990, p 245-252

    Google Scholar 

  74. E.J. Yang, X.T. Luo, G.J. Yang, C.X. Li, C.J. Li, and M. Takahashi, Epitaxial Grain Growth During 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma Spraying, Surf. Coat. Technol., 2015, 274, p 37-43

    Article  Google Scholar 

  75. K. Yang, K. Tomita, M. Fukumoto, M. Yamada, and T. Yasui, Effect of Ambient Pressure on Flattening Behavior of Thermal Sprayed Particles, J. Therm. Spray Technol., 2009, 18(4), p 510-518

    Article  Google Scholar 

  76. J. Wu, P.R. Munroe, B. Withy, and M.M. Hyland, Study of the Splat-Substrate Interface for a PEEK Coating Plasma-Sprayed onto Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(1-2), p 42-48

    Article  Google Scholar 

  77. E.J. Yang, G.J. Yang, X.T. Luo, C.J. Li, and M. Takahashi, Epitaxial Grain Growth During Splat Cooling of Alumina Droplets Produced by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2013, 22(2-3), p 152-157

    Article  Google Scholar 

  78. H. Li, K.A. Khor, and P. Cheang, Effect of Steam Treatment During Plasma Spraying on the Microstructure of Hydroxyapatite Splats and Coatings, J. Therm. Spray Technol., 2006, 15(4), p 610-616

    Article  Google Scholar 

  79. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel Substrates, Surf. Coat. Technol., 2010, 204, p 1599-1607

    Article  Google Scholar 

  80. G.-J. Yang, C.X. Li, S. Hao, Y.Z. Xing, E.J. Yang, and C.J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  81. M.A. Mulero, J. Zapata, R. Vilar, V. Martínez, and R. Gadow, Automated Image Inspection System to Quantify Thermal Spray Splat Morphology, Surf. Coat. Technol., 2015, 278, p 1-11

    Article  Google Scholar 

  82. V.V. Sobolev and J.M. Guilemany, Flattening of Droplets and Formation of Splats in Thermal Spraying: A Review of Recent Work—Part 1, J. Therm. Spray Technol., 1999, 8(1), p 87-101

    Article  Google Scholar 

  83. C.J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22(2-3), p 192-205

    Article  Google Scholar 

  84. S. Valette, “Influence of the Preoxidation of a Steel Substrate on the Adhesion of an Alumina Coating Plasma Sprayed,” Ph.D. Thesis, University of Limoges, France, 2004

  85. A.J. Allen, G.G. Long, H. Boukari, J. Ilavsky, A. Kulkarni, S. Sampath, H. Herman, and A.N. Goland, Microstructural Characterization Studies to Relate the Properties of Thermal-Spray Coatings to Feedstock and Spray Conditions, Surf. Coat. Technol., 2001, 146-147, p 544-552

    Article  Google Scholar 

  86. A. Denoirjean, A. Grimaud, P. Fauchais, P. Tristant, C. Tixier, and J. Desmaison, Splat Formation, First Step for Multi-technique Deposition of Plasma Spraying and Microwave Plasma Enhanced CVD, Thermal Spray: Meeting in Challenges of the 21st Century, Vol 2, C. Coddet, Ed., ASM International, Materials Park, 1998, p 1369-1374

    Google Scholar 

  87. C.J. Li and J.L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and Its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Article  Google Scholar 

  88. J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, and A. Dolatabadi, Modeling Thermal Spray Coating Processes: A Powerful Tool in Design and Optimization, Surf. Coat. Technol., 2003, 163-164, p 1-11

    Article  Google Scholar 

  89. S.H. Leigh and C.C. Berndt, Evaluation of Off-Angle Thermal Spray, Surf. Coat. Technol., 1997, 89, p 213-224

    Article  Google Scholar 

  90. W. Ma, W.X. Pan, and C.K. Wu, Preliminary Investigations on Low-Pressure Laminar Plasma Spray Processing, Surf. Coat. Technol., 2005, 191, p 166-174

    Article  Google Scholar 

  91. T. Liu and J. Arnold, Study of In-Flight Particle Stream and Particle Behavior for Understanding the Instability Phenomenon in Plasma Spraying Process, Surf. Coat. Technol., 2016, 286, p 80-94

    Article  Google Scholar 

  92. C. Zhang, W.Y. Li, M.P. Planche, C.X. Li, H. Liao, C.J. Li, and C. Coddet, Study on Gas Permeation Behaviour Through Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Coating, Surf. Coat. Technol., 2008, 202, p 5055-5061

    Article  Google Scholar 

  93. A. McDonald, C. Moreau, and S. Chandra, Use of Thermal Emission Signals to Characterize the Impact of Fully and Partially Molten Plasma-Sprayed Zirconia Particles on Glass Surfaces, Surf. Coat. Technol., 2010, 204, p 2323-2330

    Article  Google Scholar 

  94. S. Goutier, M. Vardelle, J.C. Labbe, and P. Fauchais, Flattening and Cooling of Millimeter- and Micrometer-Sized Alumina Drops, J. Therm. Spray Technol., 2011, 20(1-2), p 59-67

    Article  Google Scholar 

  95. S. Goutier, F. Valette, M. Vardelle, and P. Lefort, Alumina Plasma Spraying on 304L Stainless steel: Role of a Wüstite Interlayer, J. Eur. Ceram. Soc., 2011, 31, p 1685-1694

    Article  Google Scholar 

  96. S. Goutier, M. Vardelle, and P. Fauchais, Last Developments In Diagnostics to Follow Splats Formation During Plasma Spraying, J. Phys. Conf. Ser., 2011, 275, p 012003

    Article  Google Scholar 

  97. H. Liu, M. Bussmann, and J. Mostaghimi, The Effect of Undercooling on Solidification of YSZ Splats, J. Therm. Spray Technol., 2008, 17(1), p 646-654

    Article  Google Scholar 

  98. J. Mostaghimi, M. Pasandideh-Fard, and S. Chandra, Dynamics of Splat Formation in Plasma Spray Coating Process, J. Therm. Spray Technol., 2002, 22(4), p 59-84

    Google Scholar 

  99. C.J. Li, H.L. Liao, P. Gougeon, G. Montavon, and C. Coddet, Experimental Determination of the Relationship Between Flattening Degree and Reynolds Number for Spray Molten Droplets, Surf. Coat. Technol., 2005, 191, p 375-383

    Article  Google Scholar 

  100. K. Bobzin, N. Bagcivan, D. Parkot, and I. Petković, Simulation of PYSZ Particle Impact and Solidification in Atmospheric Plasma Spraying Coating Process, Surf. Coat. Technol., 2010, 204, p 1211-1215

    Article  Google Scholar 

  101. M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi, Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments, Int. J. Heat Mass Trans., 1998, 41, p 2929-2945

    Article  Google Scholar 

  102. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4, p 1657-1660

    Article  Google Scholar 

  103. M. Fukumoto, T. Yamaguchi, M. Yamada, and T. Yasui, Splash Splat to Disk Splat Transition Behavior in Plasma-Sprayed Metallic Materials, J. Therm. Spray Technol., 2007, 16(5-6), p 905-912

    Article  Google Scholar 

  104. K. Yang, M. Fukumoto, T. Yasui, and M. Yamada, Study of Substrate Preheating on Flattening Behavior of Thermal-Sprayed Copper Particles, J. Therm. Spray Technol., 2010, 19(6), p 1195-1205

    Article  Google Scholar 

  105. A.T.T. Tran, M.M. Hyland, M. Fukumoto, and P. Munroe, Studies of Splat Formation of Copper and Copper Aluminium on Ceramic Substrate in Plasma Spray Process, J. Therm. Spray Technol., 2016, 25(1-2), p 55-70

    Article  Google Scholar 

  106. C.J. Li and J.L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184, p 13-23

    Article  Google Scholar 

  107. A.T.T. Tran, M.M. Hyland, T. Qiu, B. Withy, and B.J. James, Effects of Surface Chemistry on Splat Formation During Plasma Spraying, J. Therm. Spray Technol., 2008, 17(5-6), p 637-645

    Article  Google Scholar 

  108. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Microstructure of NiCr Splats Plasma Sprayed on to Stainless Steel Substrates by TEM, Surf. Coat. Technol., 2010, 204, p 1608-1615

    Article  Google Scholar 

  109. C.W. Kang and H.W. Ng, Splat Morphology and Spreading Behavior Due to Oblique Impact of Droplets onto Substrates in Plasma Spray Coating Process, Surf. Coat. Technol., 2006, 200, p 5462-5477

    Article  Google Scholar 

  110. C.W. Kang, H.W. Ng, and S.C.M. Yu, Imaging Diagnostics Study on Obliquely Impacting Plasma-Sprayed Particles Near to the Substrate, J. Therm. Spray Technol., 2006, 15(1), p 118-130

    Article  Google Scholar 

  111. L. Bianchi, A. Denoirjean, F. Blein, and P. Fauchais, Microstructural Investigation of Plasma Sprayed Ceramic Splats, Thin Solid Films, 1977, 299, p 125-135

    Article  Google Scholar 

  112. J. Pech, B. Hannoyer, L. Bianchi, A. Denoirjean, and P. Fauchais, Study of Oxide Layers Obtained onto 304L Substrate Heated by a D.C. Plasma Jet, Thermal Spray: A United Forum for Scitienfic and Technological Advances, C.C. Berndt, Ed., Materials Park, ASM Int., 1997, p 775-782

    Google Scholar 

  113. N.Z. Mehdizadeh, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature and Roughness on Coating Formation, Proc. ITSC 2002, E. Lugscheider, DVS, Düsseldorf, Germany, 2002, p 830-837

  114. M.F. Bahbou and P. Nylén, On-Line Measurement of Plasma-Sprayed Ni-Particles during Impact on a Ti-Surface: Influence of Surface Oxidation, J. Therm. Spray technol., 2007, 16(4), p 506-511

    Article  Google Scholar 

  115. K. Shinoda, A. Yamada, M. Kambara, Y. Kojima, and T. Yoshida, Deformation of Alumina Droplets on Micro-patterned Substrates Under Plasma Spraying Conditions, J. Therm. Spray Technol., 2007, 16(2), p 300-305

    Article  Google Scholar 

  116. H.B. Parizi, L. Rosenzweig, J. Mostaghimi, S. Chandra, T. Coyle, H. Salimi, L. Pershin, A. McDonald, and C. Moreau, Numerical Simulation of Droplet Impact on Patterned Surfaces, J. Therm. Spray technol., 2007, 16(5-6), p 713-721

    Article  Google Scholar 

  117. A.C. Leger, “Experimental Study of Formation, Stacking, and Cohesion Of Zirconia Splats,” Ph.D. dissertation, University of Limoges France, 1997 (in French)

  118. M. Raessi, J. Mostaghimi, and M. Bussmann, Effect of Surface Roughness on Splat Shapes in the Plasma Spray Coating Process, Thin Solid Films, 2006, 506-507, p 133-135

    Article  Google Scholar 

  119. R. Kromer, S. Costil, J. Cormier, D. Courapied, L. Berthe, P. Peyre, and M. Boustie, Laser Surface Patterning to Enhance Adhesion of Plasma Sprayed Coatings, Surf. Coat. Technol., 2015, 278, p 171-182

    Article  Google Scholar 

  120. S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais, Influence of the Velocity of Plasma-Sprayed Particles on Splat Formation, J. Therm. Spray technol., 1993, 2(4), p 379-384

    Article  Google Scholar 

  121. H. Fukanuma, A Porosity Formation and Flattening Model of an Impinging Molten Particle in Thermal Spray Coatings, J. Therm. Spray technol., 1994, 3(1), p 33-44

    Article  Google Scholar 

  122. M. Bertagnolli, M. Marchese, and G. Jacucci, Modeling of Particles Impacting on a Rigid Substrate Under Plasma Spraying Conditions, J. Therm. Spray technol., 1995, 4(1), p 41-49

    Article  Google Scholar 

  123. G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metal. Trans., 1991, B22, p 901-914

    Article  Google Scholar 

  124. K. Shinoda, T. Koseki, and T. Yoshida, Influence of Impact Parameters of Zirconia Droplets on Splat Formation and Morphology, J. Appl. Phys., 2006, 100(7), p 074903

    Article  Google Scholar 

  125. M.M. Fasching, L.E. Weiss, and F.B. Prinz, Optimization of Robotic Trajectories for Thermal Spray Shape Deposition, Thermal Spray: Advances in Coatings Technology, C.C. Berndt, Ed., ASM Int, Materials Park, 1992, p 221-226

    Google Scholar 

  126. P. Nylén, J. Wigren, L. Pejryd, and M.-O. Hansson, The Modeling of Coating Thickness, Heat Transfer, and Fluid Flow and Its Correlation with the Thermal Barrier Coating Microstructure for a Plasma Sprayed Gas Turbine Application, J. Therm. Spray Technol., 1999, 8(3), p 393-398

    Article  Google Scholar 

  127. D. Montillet, E. Dombre, F.D. Valentin, and J.M. Goubot, Modeling, Simulating and Optimizing the Robotized Plasma Deposition: An Expression Approach, Thermal Spray, E. Lugsheider and P.A. Kammer, Ed., DVS, Düsseldorf, 1999, p 507-512

    Google Scholar 

  128. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, and M. Charmchi, A Stochastic Model to Simulate the Formation of a Thermal Spray Coating, J. Therm. Spray Technol., 2003, 12(1), p 53-69

    Article  Google Scholar 

  129. H.B. Parizi, J. Mostaghimi, L. Pershin, and H.S. Jazi, Analysis of the Microstructure of Thermal Spray Coatings: A Modeling Approach, J. Therm. Spray Technol., 2010, 19(4), p 736-744

    Article  Google Scholar 

  130. S. Deng, D. Fang, Z. Cai, H. Liao, and G. Montavon, Application of External Axis in Robot-Assisted Thermal Spraying, J. Therm. Spray Technol., 2012, 21(6), p 1203-1215

    Article  Google Scholar 

  131. S. Deng, H. Liang, Z. Cai, H. Liao, and G. Montavon, Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application, J. Therm. Spray Technol., 2014, 23(8), p 1382-1389

    Article  Google Scholar 

  132. Z. Cai, H. Liang, S. Quan, S. Deng, C. Zeng, and F. Zhang, Computer-Aided Robot Trajectory Auto-Generation Strategy in Thermal Spraying, J. Therm. Spray Technol., 2015, 4(7), p 1235-1245

    Article  Google Scholar 

  133. J. Fazilleau, C. Delbos, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behaviour, Plasma Chem. Plasma Proc., 2006, 26(4), p 371-391

    Article  Google Scholar 

  134. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414

    Article  Google Scholar 

  135. R. Etchart-Salas, V. Rat, J.F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre, Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5-6), p 857-865

    Article  Google Scholar 

  136. J. Oberste-Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  Google Scholar 

  137. F. Tarasi, M. Medraj, A. Dolatabadi, J. Oberste-Berghaus, and C. Moreau, Amorphous and Crystalline Phase Formation During Suspension Plasma Spraying of the Alumina-Zirconia Composite, J. Eur. Ceram. Soc., 2011, 31, p 2903-2913

    Article  Google Scholar 

  138. M. Erne, D. Kolar, C. Hübsch, M. Möhwald, -W. Fr, and Fr.-W Bach, Synthesis of Tribologically Favorable Coatings for Hot Extrusion Tools by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 668-675

    Article  Google Scholar 

  139. N. Schlegel, S. Ebert, G. Mauer, and R. Vaßen, Columnar-Structured Mg-Al-Spinel Barrier Coatings (TBCs) by Suspension Thermal Plasma Spraying (SPS), J. Therm. Spray Technol., 2015, 24(1-2), p 144-151

    Google Scholar 

  140. K. VanEvery, M.J.M. Krane, and R.W. Trice, Parametric Study of Suspension Plasma Spray Processing Parameters on Coating Microstructures Manufactured from Nanoscale Yttria-Stabilized Zirconia, Surf. Coat. Technol., 2012, 206, p 2464-2473

    Article  Google Scholar 

  141. T. Bhatia, A. Ozturk, L.D. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X.C. Ma, and N.P. Padture, Mechanisms of Ceramic Coating Deposition in Solution Precursor Spray, J. of Mat. Res., 2001, 17(9), p 2363-2372

    Article  Google Scholar 

  142. N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegem, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garcia, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray, Acta Mater., 2001, 49, p 2251-2257

    Article  Google Scholar 

  143. M. Gell, L.D. Xie, X.C. Ma, E.H. Jordan, and N.P. Padture, Highly Durable Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2004, 13(1), p 97-102

    Article  Google Scholar 

  144. Y. Shan, T.W. Coyle, and J. Mostaghimi, Numerical Simulation of Droplet Break-Up and Collision in Solution Precursor Plasma Spraying, J. Therm. Spray Technol., 2007, 16, p 698-704

    Article  Google Scholar 

  145. E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yittria-Stabilized Thermal Barrier coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859

    Article  Google Scholar 

  146. F.L. Toma, A. Potthoff, L.-M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152

    Article  Google Scholar 

  147. S. Basu, E.H. Jordan, and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High Temperature Plasmas, J. Therm. Spray Technol., 2006, 15(4), p 576-581

    Article  Google Scholar 

  148. S. Vincent, G. Balmigere, C. Caruyer, E. Meillot, and J.-P. Caltagirone, Contribution to the Modeling of the Interaction Between a Plasma Flow and a Liquid Jet, Surf. Coat. Technol., 2009, 203, p 2162-2171

    Article  Google Scholar 

  149. E. Meillot, S. Vincent, C. Caruyer, J.-P. Caltagirone, and D. Damiani, From DC Time-Dependent Thermal Plasma Generation to Suspension Plasma-Spraying Interactions, J. Therm. Spray Technol., 2009, 18, p 875-886

    Article  Google Scholar 

  150. C. Caruyer, S. Vincent, E. Meillot, and J.-P. Caltagirone, Modeling the First Instant of the Interaction Between a Liquid and a Plasma Jet with A Compressible Approach, Surf. Coat. Technol., 2010, 205, p 974-979

    Article  Google Scholar 

  151. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17, p 31-59

    Article  Google Scholar 

  152. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Parameter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183(1), p 51-61

    Article  Google Scholar 

  153. L. Xie, X.C. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, and M. Gell, Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process, Surf. Coat. Tech., 2004, 177-178, p 103-107

    Article  Google Scholar 

  154. D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Spray Coatings: Influence of Solvent Type, Plasma Chem. Plasma Process., 2010, 30, p 111-119

    Article  Google Scholar 

  155. O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.F. Coudert, P. Fauchais, and T. Chartier, Suspension Plasma-Sprayed Alumina Coating Structures: Operating Parameters Versus Coating Architecture, J. Therm. Spray Technol., 2008, 17(5-6), p 662-670

    Article  Google Scholar 

  156. A. Tingaud, G. Bacciochini, A. Montavon, and P.Fauchais Denoirjean, Suspension DC Plasma Spraying of Thick Finely-Structured Ceramic Coatings: Process Manufacturing Mechanisms, Surf. Coat. Technol., 2009, 203, p 2157-2161

    Article  Google Scholar 

  157. A. Joulia, W. Duarte, S. Goutier, M. Vardelle, A. Vardelle, and S. Rossignol, Tailoring the Spray Conditions for Suspension Plasma Spraying, J. Therm. Spray Technol., 2015, 24(1-2), p 24-29

    Google Scholar 

  158. J.L. Marqués, G. Forster, and J. Schein, Multi-electrode Plasma Torches: Motivation for Development and Current State-of-the-Art, Open J. Plasma Phys., 2009, 2, p 89-98

    Article  Google Scholar 

  159. http://www.Oerlikon-Metco.com/thermal-spraying/plasma

  160. R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19(1-2), p 219-225

    Article  Google Scholar 

  161. A. Guignard, G. Mauer, and R. Vaßen, Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 416-424

    Article  Google Scholar 

  162. http://www.mettech.com/coating-equipment/axial-III-plasma-spray-system.php

  163. J. Oberste-Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681

    Article  Google Scholar 

  164. D. Waldbillig and O. Kesler, Characterization of Metal-Supported Axial Injection Plasma Sprayed Solid Oxide Fuel Cells With Aqueous Suspension Plasma Sprayed Electrolyte Layers, J. Power Sources, 2009, 191, p 320-329

    Article  Google Scholar 

  165. C. Marchand, A. Vardelle, G. Mariaux, and P. Lefort, Modelling of the Plasma Spray Process with Liquid Feedstock Injection, Surf. Coat. Technol., 2008, 202, p 4458-4464

    Article  Google Scholar 

  166. P. Fauchais, M. Vardelle, S. Goutier, and A. Vardelle, Specific Measurements of In-Flight Droplet and Particle Behavior and Coating Microstructure in Suspension and Solution Plasma Spraying, J. Therm. Spray Technol., 2015, 24(8), p 1498-1505

    Article  Google Scholar 

  167. P. Fauchais and A. Vardelle, Innovative and Emerging Processes in Plasma Spraying: From Micro- to Nano-structured Coatings, J. Phys. D Appl. Phys., 2011, 44, p 194011

    Article  Google Scholar 

  168. G. Bertolissi, C. Chazelas, G. Bolelli, L. Lusvarghi, M. Vardelle, and A. Vardelle, Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2012, 21, p 1148-1162

    Article  Google Scholar 

  169. K. Landes, Diagnostics in Plasma Spraying Techniques, Surf. Coat. Technol., 2006, 201, p 1948-1954

    Article  Google Scholar 

  170. G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Process Diagnostics in Suspension Plasma Spraying, Surf. Coat. Technol., 2010, 205, p 961-966

    Article  Google Scholar 

  171. A. Joulia, G. Bolelli, E. Gualtieri, L. Lusvarghi, S. Valeri, M. Vardelle, S. Rossignol, and A. Vardelle, Comparing the Deposition Mechanisms in Suspension Plasma Spray (SPS) and Solution Precursor Plasma Spray (SPPS) Deposition Of Yttria-Stabilized Zirconia (YSZ), J. Eur. Ceram. Soc., 2014, 34, p 3925-3940

    Article  Google Scholar 

  172. S.V. Joshi, G. Sivakumar, T. Raghuveer, and R.O. Dusane, Hybrid Plasma-Sprayed Thermal Barrier Coatings Using Powder and Solution Precursor Feedstock, J. Therm. Spray Technol., 2014, 23(4), p 616-624

    Article  Google Scholar 

  173. G. Sivakumar, R.O. Dusane, and S.V. Joshi, In situ Particle Generation and Splat Formation During Solution Precursor Plasma Spraying of Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2011, 94(12), p 4191-4199

    Article  Google Scholar 

  174. S.V. Joshi and G. Sivakumar, Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1166-1186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fauchais.

Additional information

This article is an invited paper selected from presentations at the 7th Asian Thermal Spray Conference (ATSC 2015) and has been expanded from the original presentation. ATSC 2015 was held in Xi’an, China, September 23–25, 2015, and was organized by the Asian Thermal Spray Society in association with Xi’an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauchais, P., Vardelle, M. & Goutier, S. Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation. J Therm Spray Tech 25, 1534–1553 (2016). https://doi.org/10.1007/s11666-016-0435-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0435-3

Keywords

Navigation