Skip to main content
Log in

Linkages Between Microstructure and Mechanical Properties of Ultrafine Interconnects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microstructures within ultrafine electronic interconnections, which change rapidly during the formation of such joints and evolve continuously thereafter under service conditions, are an important factor to be considered in order to accurately evaluate the reliability of electronic packages that contain such interconnects. By combining phase-field and finite-element mechanical modeling techniques, this work explicitly considers both the size and geometry of the joints to understand their effects on microstructural evolution and subsequent mechanical properties. The simulation results indicate that the degree of inhomogeneity of the stress distribution increases as the size of the joints is reduced when microstructure is considered. The calculated maximum stresses present in hourglass-shaped joints when considering microstructure are approximately 10 MPa larger than those present in the corresponding joints when neglecting microstructure. The geometries of such interconnects also have a significant effect on their mechanical properties. Hourglass-shaped joints exhibit the lowest maximum von Mises stresses in comparison with the other shapes considered. In addition, the included microstructural features can introduce local stress concentrations within the microjoints, which may deteriorate the reliability and performance of the electronic packages. It is therefore recommended that the microstructure as well as the size and geometry of joints be considered among the design and fabrication parameters to enable reliable ultrafine interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang, M. Cho, D. Shih, S. Seo, and H. Lee, Proceedings of the 58th Electronic Components and Technology Conference (2008), p. 478.

  2. S. Chen, C. Wang, S. Lin, C. Chiu, and C. Chen, JOM 59, 39 (2007).

    Article  CAS  Google Scholar 

  3. Z. Huang, P.P. Conway, E. Jung, R.C. Thomson, C. Liu, T. Loeher, and M. Minkus, J. Electron. Mater. 35, 1761 (2006).

    Article  CAS  Google Scholar 

  4. I. Dutta, P. Kumar, and G. Subbarayan, JOM 61, 29 (2009).

    Article  CAS  Google Scholar 

  5. S.K. Kang, D. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  6. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).

    Article  Google Scholar 

  7. H. Shin, B. Kim, J. Kim, S. Hwang, A. Budiman, H. Son, K. Byun, N. Tamura, M. Kunz, D. Kim, and Y. Joo, J. Electron. Mater. 41, 712 (2012).

    Article  CAS  Google Scholar 

  8. Z. Huang, P.P. Conway, and R.C. Thomson, Microelectron. Reliab. 47, 1997 (2007).

    Article  CAS  Google Scholar 

  9. X. Liu and G. Lu, IEEE Trans. Compon. Packag. Technol. 26, 455 (2003).

    Article  Google Scholar 

  10. R. Darveaux, C. Reichman, C.J. Berry, W. Hsu, A. Syed, C. Kim, J. Ri, and T. Kim, Proceedings of the 58th Electronic Components and Technology Conference (2008), p. 113.

  11. B.S.S.C. Rao, D.M. Fernandez, V. Kripesh, and K.Y. Zeng, Proceedings of the 12th Electronic Packaging Technology Conference (2010), p. 423.

  12. Z. Huang, P.P. Conway, H. Davies, A. Dinsdale, Z. Wu, and B. Wang, Proceedings of the 12th International Conference on Electronics Materials and Packaging (2010), p. 60.

  13. R.S. Chen, S.C. Tseng, and C.S. Wan, Int. J. Adv. Manuf. Technol. 27, 677 (2006).

    Article  Google Scholar 

  14. M. Erinc, P.J.G. Schreurs, and M.G.D. Geers, Int. J. Mater. Struct. Integrity 2, 35 (2008).

    Article  CAS  Google Scholar 

  15. A. Zamiri, T.R. Bieler, and F. Pourboghrat, J. Electron. Mater. 38, 231 (2009).

    Article  CAS  Google Scholar 

  16. S.G. Kim, W.T. Kim, T. Suzuki, and M. Ode, J. Cryst. Growth 261, 135 (2004).

    Article  CAS  Google Scholar 

  17. K.K. Hong and J.Y. Huh, J. Electron. Mater. 35, 56 (2006).

    Article  CAS  Google Scholar 

  18. M.S. Park and R. Arróyave, Acta Mater. 58, 4900 (2010).

    Article  CAS  Google Scholar 

  19. N. Moelans, Acta Mater. 59, 1077 (2011).

    Article  CAS  Google Scholar 

  20. H. Xiong, Z. Huang, Z. Wu, and P.P. Conway, Calphad 35, 391 (2011).

    Article  CAS  Google Scholar 

  21. MATLAB—the Language of Technical Computing-Getting Started with MATLAB Version 7.8 (The MathWorks Inc., MA, USA, 2009).

  22. COMSOL Multiphysics User’s Guide Version 4.2 (COMSOL AB, Stockholm, Sweden, 2011).

  23. S.G. Kim, W.T. Kim, J.S. Lee, M. Ode, and T. Suzuki, ISIJ Int. 39, 335 (1999).

    Article  CAS  Google Scholar 

  24. COMSOL Multiphysics—Structural Mechanics Module User’s Guide Version 4.2 (COMSOL AB, Stockholm, Sweden, 2011), p. 36.

  25. G. Ghosh, J. Mater. Res. 19, 1439 (2004).

    Article  CAS  Google Scholar 

  26. R.J. Field, S.R. Low III, and G.K. Lucey, Jr., Physical and Mechnical Properties of Intermeallic Compounds Commonly Found in Solder joints. (National Institute of Standards and Technology, 2011) http://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html. Accessed 8 July 2012.

  27. H. Ma and J.C. Suhling, J. Mater. Sci. 44, 1141 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Huang, Z., Xiong, H. et al. Linkages Between Microstructure and Mechanical Properties of Ultrafine Interconnects. J. Electron. Mater. 42, 263–271 (2013). https://doi.org/10.1007/s11664-012-2201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2201-8

Keywords

Navigation