Skip to main content
Log in

Efficient plant regeneration via direct organogenesis and Agrobacterium tumefaciens-mediated genetic transformation of Picrorhiza kurroa: an endangered medicinal herb of the alpine Himalayas

  • Biotechnology/Genetic Transformation/Functional Genomics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Picrorhiza kurroa Royle ex. Benth. is a medicinal herb of immense therapeutic value with restricted geographic distribution. Efficient plant regeneration via direct organogenesis and Agrobacterium tumefaciens-mediated genetic transformation was developed for this plant. Multiple shoot bud induction was achieved from leaf explants cultured in Gamborg’s B5 medium containing 3 % (w/v) sucrose, 3 mg/l kinetin and 1 mg/l indole-3-butyric acid. More than 90 % of leaf explants formed shoot buds leading to whole plant regeneration. An Agrobacterium-mediated genetic transformation protocol was developed using A. tumefaciens strain GV3101 harboring binary vector pCAMBIA1302 containing the green fluorescent protein and hygromycin phosphotransferase genes. Leaf explants precultured for 2 d were the most suitable for co-cultivation with Agrobacterium and transformation efficiency was enhanced with 200 μM acetosyringone. Putative transformants were selected using media containing 15 mg/l hygromycin. Transformation was verified by detection of the green fluorescent protein using fluorescence microscopy and by polymerase chain reaction. Approximately 56 % of the explants were transformed with an average of 3.4 ± 0.4 transgenic plantlets per explant. An efficient regeneration and transformation protocol thus developed enabling a fresh perspective of metabolic engineering in P. kurroa using an Agrobacterium-mediated transformation. This is the first report of direct organogenesis from leaf explants and genetic transformation of P. kurroa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4

Similar content being viewed by others

References

  • An G (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  PubMed  CAS  Google Scholar 

  • Ansari RA, Aswal BS, Chander R (1988) Hepatoprotective activity of kutkin—The iridoid glycoside mixture of Picrorhiza kurroa. Indian J Med Res 87:401–404

    PubMed  CAS  Google Scholar 

  • Badola HK (2002) Endangered medicinal plant species in Himachal Pradesh. Curr Sci 83(7):797–798

    Google Scholar 

  • Chander R, Kapoor NK, Dhawan BN (1992) Picroliv, picroside-I and kutkoside from P. kurroa are scavengers of superoxide anions. Biochem Pharmacol 44:180–183

    Article  PubMed  CAS  Google Scholar 

  • Chandra B, Palni LMS, Nandi SK (2006) Propagation and conservation of P. kurroa Royle ex Benth.: An endangered Himalayan medicinal herb of high commercial value. Biodiver Conser 15:2325–2328

    Article  Google Scholar 

  • Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    Article  PubMed  CAS  Google Scholar 

  • Dorch W, Stuppner H, Wagner H (1991) Anti-asthmatic effects of P. kurroa: Androsin prevents allergen and PAF induced bronchial obstruction in guinea pig. Int Arch Allergy Appl Immunol 95:128–133

    Article  Google Scholar 

  • Farnsworth NR, Soejarto DD (1991) Global importance of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) Conservation and medicinal plants. Cambridge University Press, Cambridge, pp 25–51

    Chapter  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: Are we there yet? Curr Opin Biotechnol 19:138–144

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Khajuria A, Singh J, Suri KA, Qazi GN (2006) Immunomodulatory activity of biopolymeric fraction RLJ-NE-205 from Picrorhiza kurroa. Int Immunopharmacol 6:1543–1549

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5:389–405

    Article  Google Scholar 

  • Joy KL, Rajeshkumar NV, Kuttan R (2000) Effect of Picrorhiza kurroa extract on transplanted tumors and chemical carcinogenesis in mice. J Ethanopharmacol 71:261–266

    Article  CAS  Google Scholar 

  • Kapahi BK, Srivastava TN, Sarin YK (1993) Description of Picrorhiza kurroa a source of the ayurvedic drug kutuki. Int J Pharmacogn 31:217–222

    Article  Google Scholar 

  • Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S (2010) Light and temperature regulated terpene biosynthesis: Hepatoprotective monoterpene picroside accumulation in Picrorhiza kurroa. Funct Integr Genomics 10(3):393–404

    Article  PubMed  CAS  Google Scholar 

  • Khajuria A, Gupta A, Singh S, Malik F, Singh J, Suri KA, Satti NK, Qazi GN, Srinivas VK, Gopinathan EK (2007) RLJ-NE-299A: A new plant based vaccine adjuvant. Vaccine 25:2706–2715

    Article  PubMed  CAS  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annu Rev Plant Biol 60:35–355

    Article  Google Scholar 

  • Kumar S, Singh J, Shah NC, Ranjan V (1997) Picrorhiza kurroa. In: Sharma A, Kumar A, Tewari R, Hasan SA (eds) Indian medicinal and aromatic plants facing genetic erosion. Director, CIMAP, Lucknow, pp 169–172

    Google Scholar 

  • Lal N, Ahuja PS, Kukreja AK, Pandey B (1998) Clonal propagation of Picrorhiza kurroa Royle ex Benth. by shoot tip culture. Plant Cell Rep 7:202–206

    Article  Google Scholar 

  • Langer JG, Gupta OP, Atal CK (1981) Clinical trials Picrorhiza kurroa as immunomodulator. Indian J Pharmacol 13:98–99

    Google Scholar 

  • Lattoo SK, Bamotra S, Dhar RS, Khan S, Dhar AK (2006) Rapid plant regeneration and analysis of genetic fidelity of in vitro-derived plants of Chlorophytum arundinaceum Baker—An endangered medicinal herb. Plant Cell Rep 25:499–506

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci U S A 98:8915–8920

    Article  PubMed  CAS  Google Scholar 

  • Mishra J, Bhandari H, Singh M, Rawat S, Agnihotri RK, Mishra S, Purohit S (2010) Hairy root culture of Picrorhiza kurroa Royle ex Benth.: A promising approach for the production of picrotin and picrotoxinin. Acta Physiol Plant. doi:10.1007/s11738-011-0724-x:1-6

  • Rajaram D (1976) A preliminary clinical trial of Picrorhiza kurroa in bronchial asthma. Bombay Hosp J 18:66–69

    Google Scholar 

  • Sharma N, Sharma B (2003) Cryopreservation of shoot tips of Picrorhiza kurroa Royle ex Benth, an indigenous endangered medicinal plant through vitrification. Cryo Lett 24:181–190

    Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Sood H, Chauhan RS (2009) High frequency callus induction and plantlet regeneration from different explants of Picrorhoza kurroa—A medicinal herb of Himalayas. Afr J Biotech 8:9–17

    Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski PC (1985) Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stuppner H, Wagner H (2000) New cucurbitacin glycosides from Picrorhiza kurroa. Planta Med 55:559–563

    Article  Google Scholar 

  • Trigiano RN, Gray DJ (eds) (2002) Plant tissue culture concepts and laboratory exercises, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–36

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Verma PC, Rahman L, Negi AS, Jain DC, Khanuja SPS, Banerjee S (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: Establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1:169–174

    Article  Google Scholar 

  • Wang GL, Fang HL (1998) Mechanism and technology of plant genetic engineering. Science, Beijing

    Google Scholar 

  • Zheng SJ, Khrustaleva L, Henken B, Jacobsen E, Kik C, Krens FA (2001) Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: The production of transgenic onions and shallots. Mol Breed 7:101–115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge a financial grant from the Council of Scientific and Industrial Research, Government of India, New Delhi, under Network Project NWP 0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surrinder K. Lattoo.

Additional information

Editor: M. Nakano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, W.W., Lattoo, S.K., Rana, S. et al. Efficient plant regeneration via direct organogenesis and Agrobacterium tumefaciens-mediated genetic transformation of Picrorhiza kurroa: an endangered medicinal herb of the alpine Himalayas. In Vitro Cell.Dev.Biol.-Plant 48, 295–303 (2012). https://doi.org/10.1007/s11627-012-9434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-012-9434-3

Keywords

Navigation